如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結論:①∠BOC=90°+∠A;②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;③設OD=m,AE+AF=n,則S△AEF=mn;④EF不可能是△ABC的中位線.其中正確結論的個數(shù)是( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:此題涉及的知識點較多,逐一分析解答.
①根據(jù)三角形內角和定理求解;
②根據(jù)兩圓位置關系的判定方法求解;
③根據(jù)三角形AEF的面積=三角形AOE的面積+三角形AOF的面積求解;
④若此三角形為等邊三角形,則EF即為中位線.
解答:解:①中,∠BOC=180°-( ∠ABC+∠ACB)=180°-(180°-∠A)=90°+∠A.所以①正確;
②中,∠EBO=∠EOB,則EB=EO,同理FO=FC;則以E為圓心,BE為半徑的圓經過點O.同理,以F為圓心,CF為半徑的圓也經過點O,則這兩個圓外切,所以②正確;
③中,連接AO,則AO也是此三角形的角平分線,則點O到AB與到AC的距離相等,則三角形AEF的面積=三角形AOE的面積+三角形AOF的面積,又高相等,則等于 mn,這與原題不符,所以此項錯誤;
④連AO,設EF是△ABC的中位線,
∵EF∥BC,∠ABO=∠CBO,
∴OE=BE=•AB,
∴∠AOB=90°(三角形一邊上的中線等于這邊的一半,是直角三角形)
同理∠AOC=90°,
∴O的應該在BC上,由WF過O點,
EF與BC重合,
∴E、F不可能是三角形ABC的中點,即EF不可能是△ABC的中位線.
所以此項正確;
正確的結論是①、②、④,
故選C.
點評:本題考查的內容比較全面,信息量較大,遇到此類題目要逐一分析,從而得出結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案