科目:初中數學 來源: 題型:
觀察發(fā)現(xiàn)
如題26(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如題26(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這
點就是所求的點P,故BP+PE的最小值為 .
題26(a)圖 題26(b)圖
(2)實踐運用
如題26(c)圖,已知⊙O的直徑CD為4,AD的度數為60°,點B是的中點,在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.
題26(c)圖 題26(d)圖
(3)拓展延伸
如題26(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留
作圖痕跡,不必寫出作法.
查看答案和解析>>
科目:初中數學 來源:2010年高級中等學校招生考試數學卷(江蘇蘇州) 題型:解答題
觀察發(fā)現(xiàn)
如題26(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最小.
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如題26(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這
點就是所求的點P,故BP+PE的最小值為 .
題26(a)圖 題26(b)圖
(2)實踐運用
如題26(c)圖,已知⊙O的直徑CD為4,AD的度數為60°,點B是的中點,在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.
題26(c)圖 題26(d)圖
(3)拓展延伸
如題26(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留
作圖痕跡,不必寫出作法.
查看答案和解析>>
科目:初中數學 來源:2010年高級中等學校招生考試數學卷(江蘇蘇州) 題型:解答題
觀察發(fā)現(xiàn)
如題26(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如題26(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這
點就是所求的點P,故BP+PE的最小值為 .
題26(a)圖 題26(b)圖
(2)實踐運用
如題26(c)圖,已知⊙O的直徑CD為4,AD的度數為60°,點B是的中點,在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.
題26(c)圖 題26(d)圖
(3)拓展延伸
如題26(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留
作圖痕跡,不必寫出作法.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com