【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是( )

A. AB=24m B. MNAB

C. CMN∽△CAB D. CM:MA=1:2

【答案】D.

【解析】

試題根據(jù)三角形的中位線和相似三角形的判定與性質(zhì)逐一作出判定:

M、N分別是AC,BC的中點,MNAB,MN=AB. 故選項B正確.

MN=12m,AB=2MN=2×12=24m. 故選項A正確.

MNAB,CMN∽△CAB. 故選項C正確.

M是AC的中點,CM=MA. CM:MA=1:1. 故選項D錯誤.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y1=x+mx軸、y軸分別交于點A、B,與雙曲線x0)分別交于點C、D,且C點的坐標為(﹣1,2).

1)分別求出直線AB及雙曲線的解析式;

2)求出點D的坐標;

3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,AB的垂直平分線DEAB、AC于點E、D,若ABCBCD的周長分別為21cm13cm,求ABC的各邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線ACBD相交于點G,EAD的中點,連結(jié)BEACF,連結(jié)FD,若∠BFA=90°,則下列四對三角形:①△BEA△ACD②△FED△DEB③△CFD△ABG④△ADF△CFB中相似的為( )

A. ①④B. ①②C. ②③④D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x;

1)求x2+y2xy的值;

2)若x的小數(shù)部分為a,y的小數(shù)部分為b,求(a+b2+的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點GBC延長線上一點,AGBD交于點E,與DC交于點F,則圖中相似三角形共有幾對?分別寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD、∠ACD的角平分線交于點P,若∠A = 50°,D =10°,則∠P的度數(shù)為( )

A.15°B.20°C.25°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在任意四邊形ABCD,AC,BD是對角線,E、F、G、H分別是線段BDBC、AC、AD上的點,對于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動課中,通過動手實踐探索出如下結(jié)論,其中錯誤的是( )

A. 當(dāng)EF,G,H是各條線段的中點時,四邊形EFGH為平行四邊形

B. 當(dāng)E,FG,H是各條線段的中點ACBD,四邊形EFGH為矩形

C. 當(dāng)EF,GH是各條線段的中點,AB=CD四邊形EFGH為菱形

D. 當(dāng)E,F,G,H不是各條線段的中點時四邊形EFGH可以為平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是矩形ABCD的邊AD、AB上的點,EF=EC,且EFEC.

(1)求證:AEF≌△DCE;

(2)若DC=,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案