在以O為原點的平面直角坐標系中,拋物線y軸交于點C03),與x軸正半軸交于A、B兩點(BA點的右側),拋物線的對稱軸是x=2,且。

(1)求此拋物線的解析式;

(2)設此拋物線的頂點為D,求四邊形ADBC的面積。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過格點A、B、C.以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系,該圓弧所在圓的圓心為點D.
(1)寫出點的坐標:C
 
、D
 
;
(2)⊙D的半徑=
 
(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;②根據(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:A
 
、B
 
、C
 
、D
 

②⊙D的半徑=
 
(結果保留根號);
③求∠ADC的度數(shù)(寫出解答過程)
④若扇形ADC是一個圓錐的側面展開圖,求該圓錐的底面的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:
①以點O為原點、豎直和水平方向所在的直線為坐標軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.
(2)請在(1)的基礎上,完成下列問題:
①寫出點的坐標:C
 
、D
 
;
②⊙D的半徑=
 
(結果保留根號);
③若扇形ADC是一個圓錐的側面展開圖,則該圓錐的底面面積為
 
(結果保留π);
④若E(7,0),試判斷直線EC與⊙D的位置關系并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:
①以點O為原點、豎直和水平方向所在的直線為坐標軸、網(wǎng)格邊長為單位長度,建立平面直角坐標系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.
(2)請在(1)的基礎上,完成下列問題:
①寫出點的坐標:C
(6,2)
(6,2)
、D
(2,0)
(2,0)

②⊙D的半徑=
2
5
2
5
.(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•呼倫貝爾)如圖①,在平面直角坐標系內,Rt△ABC≌Rt△FED,點C、D與原點O重合,點A、F在y軸上重合,∠B=∠E=30°,AC=FD=
3
.△FED不動,△ABC沿直線BE以每秒1個單位的速度向右平移,直到點B與點E重合為止,設移動x秒后兩個三角形重疊部分的面積為s.

(1)求出圖①中點B的坐標;
(2)如圖②,當x=4秒時,點M坐標為(2,
3
3
),求出過F、M、A三點的拋物線的解析式;此拋物線上有一動點P,以點P為圓心,以2為半徑的⊙P在運動過程中是否存在與y軸相切的情況?若存在,直接寫出P點的坐標;若不存在,請說明理由.
(3)求出整個運動過程中s與x的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案