【題目】△ABC在平面直角坐標系xOy中的位置如圖所示

(1)若△A1B1C1與△ABC關于原點O成中心對稱,則點A1的坐標為  

(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為  ;

(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為  ;

(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標為  

【答案】(1)(2,-3);(2)(3,1);(3)π;(4)(-,0)

【解析】(1)根據(jù)關于原點成中心對稱的兩點的坐標特征即可得到結(jié)果;(2)根據(jù)點的平移特征即可得到結(jié)果;(3)根據(jù)旋轉(zhuǎn)的特征即可得到結(jié)果;(4)根據(jù)“馬飲水”問題的特征可求出結(jié)果.

1)若△A1B1C1與△ABC關于原點O成中心對稱,則點A1的坐標為 (2,﹣3) 

2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為。3,1) ;

3)將△ABCO點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為 π ;

4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標為 (﹣,0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】窗戶的形狀如圖所示(圖中長度單位:cm),其上部是半圓形,下部是邊長相同的四個小正方形,已知下部小正方形的邊長是acm,計算:

1)窗戶的面積;

2)窗戶的外框的總長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,C點在EF上,,BC平分,且.下列結(jié)論:

AC平分;②;③;④.其中結(jié)論正確的個數(shù)有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】書是人類進步的階梯!為愛護書一般都將書本用封皮包好,現(xiàn)有一本如圖1的數(shù)學課本,其長為26cm、寬為18.5cm、厚為1cm,小海寶用一張長方形紙包好了這本數(shù)學書,他將封面和封底各折進去xcm封皮展開后如圖(2)所示,求:

(1)則小海寶所用包書紙的面積是多少?(用含x的代數(shù)式表示)

(2)當封面和封底各折進去2cm時,請幫小海寶計算一下他需要的包裝紙至少需要多少平方厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠A=72°BCD=31°,CD平分∠ACB

1)求∠B的度數(shù);

2)求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中:①有限小數(shù)是有理數(shù);②無限小數(shù)都是無理數(shù);③任意兩個無理數(shù)的和還是無理數(shù);④開方開不盡的數(shù)是無理數(shù);⑤一個數(shù)的算術平方根一定是正數(shù);⑥一個數(shù)的立方根一定比這個數(shù);⑦任意兩個有理數(shù)之間都有有理數(shù),任意兩個無理數(shù)之間都有無理數(shù).⑧有理數(shù)和數(shù)軸上的點一一對應;⑨不帶根號的數(shù)一定是有理數(shù);⑩負數(shù)沒有立方根.其中正確的有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,經(jīng)過t秒后,以O,A為頂點作菱形OABC,使B,C點都在第一象限內(nèi),且AO=AC,又以P(0,4)為圓心,PC為半徑的圓恰好與OC所在的直線相切,則t等于(   )

A. 2-1 B. 2+1 C. 5 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC=12厘米,∠B=C,BC=8厘米,點DAB的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為_____厘米/秒,△BPD與△CQP全等.

查看答案和解析>>

同步練習冊答案