如圖,過⊙O上一點(diǎn)C作⊙O的切線,交⊙O直徑AB的延長線于點(diǎn)D.若∠D=40°,則∠A的度數(shù)為( 。
A.20° B.25° C.30° D.40°
B【考點(diǎn)】切線的性質(zhì);三角形內(nèi)角和定理;三角形的外角性質(zhì);等腰三角形的性質(zhì);圓周角定理.
【專題】計算題.
【分析】連接OC,根據(jù)切線的性質(zhì)求出∠OCD,求出∠COD,求出∠A=∠OCA,根據(jù)三角形的外角性質(zhì)求出即可.
【解答】解:連接OC,
∵CD切⊙O于C,
∴OC⊥CD,
∴∠OCD=90°,
∵∠D=40°,
∴∠COD=180°﹣90°﹣40°=50°,
∵OA=OC,
∴∠A=∠OCA,
∵∠A+∠OCA=∠COD=50°,
∴∠A=25°.
故選B.
【點(diǎn)評】本題考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,切線的性質(zhì),等腰三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生運(yùn)用這些性質(zhì)進(jìn)行推理的能力,題型較好,難度也適中,是一道比較好的題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,三個正方形圍成一個直角三角形,64,400分別為所在正方形的面積,則圖中字母所代表的正方形面積是( 。
A.400+64 B. C.400﹣64 D.4002﹣642
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個最小值為( )
A.2 B.2 C.3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時定點(diǎn)投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時定點(diǎn)投籃平均每個人的進(jìn)球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)如圖1,在四邊形ABCD中,添加一個條件使得四邊形ABCD是“等鄰邊四邊形”.請寫出你添加的一個條件.
(2)小紅猜想:對角線互相平分的“等鄰邊四邊形”是菱形.她的猜想正確嗎?請說明理由.
(3)如圖2,小紅作了一個Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿∠ABC的平分線BB′方向平移得到△A′B′C′,連結(jié)AA′,BC′.小紅要使得平移后的四邊形ABC′A′是“等鄰邊四邊形”,應(yīng)平移多少距離(即線段B′B的長)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com