【題目】.如圖 1BD 分別是 x 軸和 y 軸的正半軸上的點,ADx ,ABy (AD>AB),點 P C 點出發(fā),以 3cm/s 的速度沿 CDAB 勻速運動,運動到 B 點時終止;點 Q B 點出發(fā),以 2cm/s 的速度,沿 BCD 勻速運動,運動到 D 點時終止.P、Q 兩點同時出發(fā), 設運動的時間為 t(s),PCQ 的面積為 S(cm2),S t 之間的函數(shù)關(guān)系由圖 2 中的曲線段 OE,線段 EF、FG 表示.

(1) AD 點的坐標;

(2)求圖2中線段FG的函數(shù)關(guān)系式;

(3)是否存在這樣的時間 t,使得PCQ 為等腰三角形?若存在,直接寫出 t 的值;若不存在, 請說明理由.

【答案】1 D0,3, A6,3);(2 ;(3,,

【解析】

1)由圖象可知CD=3×1=3,設AD=BC=a,根據(jù)點Q到達點C時,點P到達點A,列出方程即可求出a

2)當點QCD上,點PAB上時,對應的函數(shù)圖象是線段FG,由此即可解決問題.

3)分三種情形討論:①QBC上,PCD上時,列出方程即可;

QBC上,PAD上時,由CP=CQ62t,整理得5t2+6t18=0解方程即可;

PQ=CQ62t,整理得7t222t+18=0,△<0,無解.當PC=PQ62t=23t3),解得t;

QCD上,PAB上時,由CP=PQ列出方程即可.

1)設AD=BC=a,由圖象可知CD=AB=3,點Q到達點C時,點P到達點A,否則P、Q繼續(xù)運動時,St的函數(shù)圖象不是直線,∴,∴a=6,∴點A坐標(6,3),點D坐標(03).

2)當點QCD上,點PAB上時,對應的函數(shù)圖象是線段FG,∴SCQ6=3CQ=32t6=6t18

3)分三種情況討論:

QBC上,PCD上時,由CP=CQ62t=3t,解得:t(不合題意舍棄,1);

QBC上,PAD上時,由CP=CQ得:62t,整理得5t2+6t18=0,t(舍棄).

PQ=CQ,如圖1

PKOBK,則DP=OK=3t3,KQ=62t﹣(3t3=95t,∴PQ,62t,整理得7t222t+18=0,△<0,無解.

PC=PQ.如圖2

PKOBK,則OK=KQ=DP,∴OQ=2DP,∴62t=23t3),解得t;

QCD上,PAB上時,由CP=PQ,如圖3

PKODK,則KQ=OK=PB,∴2PB=OQ,∴2123t=2t6,解得:t

綜上所述tsss時,△PCQ為等腰三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點AB.已知ABMN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.

(1)求點MAB的距離;(結(jié)果保留根號)

(2)B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABCD中,DHAB于點H,CD的垂直平分線交CD于點E,交AB于點F,AB=6,DH=4,BF:FA=1:5.

(1)如圖2,作FGAD于點G,交DH于點M,將DGM沿DC方向平移,得到CG′M′,連接M′B.

①求四邊形BHMM′的面積;

②直線EF上有一動點N,求DNM周長的最小值.

(2)如圖3,延長CBEF于點Q,過點QQKAB,過CD邊上的動點PPKEF,并與QK交于點K,將PKQ沿直線PQ翻折,使點K的對應點K′恰好落在直線AB上,求線段CP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點,且CECF

(1)求證:△ABE≌△ADF

(2)若菱形ABCD中,AB4,∠C120°,∠EAF60°,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角ABC中,∠C=90°DBC的中點,將ABC折疊,使點A與點D重合,EF為折痕,則cosBED的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教育局為了了解初二學生第一學期參加社會實踐活動的天數(shù),隨機抽查本市部分初二學生第一學期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖)

請你根據(jù)圖中提供的信息,回答下列問題:

1a=

2)補全條形統(tǒng)計圖;

3)求實踐天數(shù)為5天對應扇形的圓心角度數(shù);

4)如果該市有初二學生20000人,請你估計活動時間不少于5的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.

(1)當m=4,n=20時.

①若點P的縱坐標為2,求直線AB的函數(shù)表達式.

②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加快城鄉(xiāng)對接,建設美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山.汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC100千米,∠A45°,∠B30°

1)開通隧道前,汽車從A地到B地要走多少千米?

2)開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案