【題目】如圖,在四邊形中,點(diǎn)從點(diǎn)出發(fā)以的速度沿向點(diǎn)勻速移動,點(diǎn)從點(diǎn)出發(fā)以的速度沿向點(diǎn)勻速移動,點(diǎn)從點(diǎn)出發(fā)以的速度沿向點(diǎn)勻速移動.點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其他兩個(gè)點(diǎn)也隨之停止運(yùn)動,設(shè)移動時(shí)間為

1)如圖①,

①當(dāng)為何值時(shí),點(diǎn)為頂點(diǎn)的三角形與全等?并求出相應(yīng)的的值;

②連接交于點(diǎn),當(dāng)時(shí),求出的值;

2)如圖②,連接交于點(diǎn).當(dāng)時(shí),證明:

【答案】1)①,,;②;(2)見解析

【解析】

1)①當(dāng)時(shí)或當(dāng)時(shí),分別列出方程即可解決問題;

②當(dāng)時(shí),由,推出,列出方程即可解決問題;

2)如圖②中,連接只要證明,推出,可得,推出,即;

解:(1)①

當(dāng)時(shí),有,即

由①②可得,

當(dāng)時(shí),有,,即

④,

由③④可得

綜上所述,當(dāng),時(shí),以、、為頂點(diǎn)的三角形與全等;

,

,

,

,

中,

,

,

,

,

;

2當(dāng)時(shí),,而,

點(diǎn)在點(diǎn)之間,

,

,

如圖②中,連接

,

,

,

,,

中,

,

,

,,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BD、CE分別是∠ABC和∠ACB的平分線,AMCEP,交BCM,ANBDQ,交BCN,∠BAC=110°,AB=6AC=5,MN=2,結(jié)論①AP=MP;②BC=9;③∠MAN=35°;④AM=AN.其中不正確的有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CD切⊙O于點(diǎn)D,ACCD交⊙O于點(diǎn)E,若∠BAC=60°,AB=4,則陰影部分的面積是()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種水果,迸價(jià)為每箱40元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱72元,每月可銷售60箱.經(jīng)市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降低2元,則每月的銷量將增加10箱,設(shè)每箱水果降價(jià)x元(x為偶數(shù)),每月的銷量為y箱.

(1)寫出yx之間的函數(shù)關(guān)系式和自變量x的取值范圍.

(2)若該超市在銷售過程中每月需支出其他費(fèi)用500元,則如何定價(jià)才能使每月銷售水果的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計(jì)劃經(jīng)銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價(jià)、售價(jià)如下表所示.

價(jià)格/類型

A

B

進(jìn)價(jià)(元/盞)

40

65

售價(jià)(元/盞)

60

100

1)若該商場購進(jìn)這批臺燈共用去2500元,問這兩種臺燈各購進(jìn)多少盞?

2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進(jìn)B種臺燈多少盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1=(x0)的圖象上,頂點(diǎn)B在函數(shù)y2=(x0)的圖象上,ABO=30°,則=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)B(3,2),點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)O對稱,BA⊥x軸于點(diǎn)A,CD⊥x軸于點(diǎn)D.

(1)求這個(gè)反比函數(shù)的表達(dá)式;

(2)求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB=4,C為線段AB上的一個(gè)動點(diǎn),以AC、BC為邊作等邊△ACD和等邊△BCE,⊙O外接于△CDE,則⊙O半徑的最小值為( 。

A. 4 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA交⊙OA、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過CCDPA,垂足為D.

(1)求證:CD為⊙O的切線;

(2)CD=2AD,O的直徑為10,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案