如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA,OC分別落在x軸、y軸上,連接AC,將矩形紙片OABC沿AC折疊,使點B落在點D的位置,若B(1,2),則點D的橫坐標(biāo)是( 。
分析:首先過點D作DF⊥OA于F,由四邊形OABC是矩形與折疊的性質(zhì),易證得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的長,然后由平行線分線段成比例定理求得AF的長,即可得點D的橫坐標(biāo).
解答:解:過點D作DF⊥OA于F,
∵四邊形OABC是矩形,
∴OC∥AB,
∴∠ECA=∠CAB,
根據(jù)題意得:∠CAB=∠CAD,∠CDA=∠B=90°,
∴∠ECA=∠EAC,
∴EC=EA,
∵B(1,2),
∴AD=AB=2,
設(shè)OE=x,則AE=EC=OC-OE=2-x,
在Rt△AOE中,AE2=OE2+OA2,
即(2-x)2=x2+1,
解得:x=
3
4
,
∴OE=
3
4
,AE=
5
4
,
∵DF⊥OA,OE⊥OA,
∴OE∥DF,
AO
AF
=
OE
FD
=
AE
AD
=
5
4
2
=
5
8
,
∴AF=
8
5

∴OF=AF-OA=
3
5
,
∴點D的橫坐標(biāo)為:-
3
5

故選:D.
點評:此題考查了折疊的性質(zhì),矩形的性質(zhì),等腰三角形的判定與性質(zhì)以及平行線分線段成比例定理等知識.此題綜合性較強,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,連接OB將紙片沿OB折疊,使A落在A′的位置,若OB=
5
,tan∠BOC=
1
2
,則OA′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河南省扶溝縣初三下學(xué)期《解直角三角形》檢測題 題型:填空題

如圖,把矩形紙片OA BC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,  連結(jié)O B將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年河南省扶溝縣初三下冊26章《用函數(shù)觀點看一元二次方程》檢測題 題型:填空題

如圖,把矩形紙片OA BC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,   連結(jié)O B將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把矩形紙片OA BC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,   連結(jié)OB將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把矩形紙片OA BC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,  連結(jié)O B將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

查看答案和解析>>

同步練習(xí)冊答案