8.已知點(diǎn)A在半徑為3的⊙O內(nèi),OA等于1,點(diǎn)B是⊙O上一點(diǎn),連接AB,當(dāng)∠OBA取最大值時(shí),AB長(zhǎng)度為( 。
A.$\sqrt{10}$B.2$\sqrt{2}$C.3D.2

分析 當(dāng)AB⊥OA時(shí),AB取最小值,∠OBA取得最大值,然后在直角三角形OBA中利用勾股定理求PA的值即可.

解答 解:在△OBA中,當(dāng)∠OBA取最大值時(shí),OA取最大值,
∴BA取最小值,
又∵OA、OB是定值,
∴BA⊥OA時(shí),BA取最小值;
在直角三角形OBA中,OA=1,OB=3,
∴AB=$\sqrt{9-1}$=2$\sqrt{2}$.
故選B.

點(diǎn)評(píng) 本題考查了解直角三角形.解答此題的關(guān)鍵是找出“當(dāng)BA⊥OA時(shí),BA取最小值”即“BA⊥OA時(shí),∠OBA取最大值”這一隱含條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如果函數(shù)y=(k-2)x|k-1|+3是一次函數(shù),則k=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖①,四邊形OACB為長(zhǎng)方形,A(-6,0),B(0,4),直線l為函數(shù)y=-2x-5的圖象.
(1)點(diǎn)C的坐標(biāo)為(-6,4);
(2)若點(diǎn)P在直線l上,△APB為等腰直角三角形,∠APB=90°,求點(diǎn)P的坐標(biāo);
小明的思考過程如下:
第一步:添加輔助線,如圖②,過點(diǎn)P作MN∥x軸,與y軸交于點(diǎn)N,與AC的延長(zhǎng)線交于點(diǎn)M;
第二步:證明△MPA≌△NBP;
第三步:設(shè)NB=m,列出關(guān)于m的方程,進(jìn)而求得點(diǎn)P的坐標(biāo).
請(qǐng)你根據(jù)小明的思考過程,寫出第二步和第三步的完整解答過程;
(3)若點(diǎn)P在直線l上,點(diǎn)Q在線段AC上(不與點(diǎn)A重合),△QPB為等腰直角三角形,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.二次函數(shù)y=3x2+4的圖象與x軸沒有交點(diǎn),其方程3x2+4=0在實(shí)數(shù)范圍內(nèi)無解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖表示兩輛汽車行駛路程與時(shí)間的關(guān)系(汽車B在汽車A后出發(fā))的圖象,試回答下列問題:
(1)圖中l(wèi)1,l2分別表示哪一輛汽車的路程與時(shí)間的關(guān)系?
(2)寫出汽車A和汽車B行駛的路程s與時(shí)間t的函數(shù)關(guān)系式,并求汽車A和汽車B的速度;
(3)圖中交點(diǎn)的實(shí)際意義是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知⊙O的半徑為2,C為直徑AB延長(zhǎng)線上一點(diǎn),BC=2.過C任作一直線l.若l上總存在點(diǎn)P,使過P所作的⊙O的兩切線互相垂直,則∠ACP的最大值等于45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且$\widehat{AB}$=60°,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線EF與⊙O交于G,H兩點(diǎn).若⊙O的半徑為6,則GE+FH的最大值為9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB邊上有一動(dòng)點(diǎn)P(不與A、B重合),連結(jié)DP,作PQ⊥DP,使得PQ交線段BC于點(diǎn)E,設(shè)AP=x.
(1)當(dāng)x為何值時(shí),△APD是等腰三角形?
(2)若設(shè)BE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)若BC的長(zhǎng)a可以變化,在現(xiàn)在的條件下,是否存在點(diǎn)P,使得PQ經(jīng)過點(diǎn)C?若不存在,請(qǐng)說明理由;若存在,寫出當(dāng)BC的長(zhǎng)在什么范圍內(nèi)時(shí),可以存在這樣的點(diǎn)P,使得PQ經(jīng)過點(diǎn)C,并求出相應(yīng)的AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.用4個(gè)棱長(zhǎng)為1的正方體搭成一個(gè)幾何模型,其從正面、左面看到的圖形如圖所示,則該幾何體從上面看到的圖形不可能為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案