【題目】【問題情境】
課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
如圖①,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點(diǎn)E,使DE=AD,連接BE.請(qǐng)根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點(diǎn)”、“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.
【初步運(yùn)用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
【靈活運(yùn)用】
如圖③,在△ABC中, ∠A=90°,D為BC中點(diǎn), DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
【答案】【問題提出】(1)B;(2)2<AD<10;【初步運(yùn)用】5;【靈活運(yùn)用】猜想:BE2+CF2=EF2,證明見解析.
【解析】試題分析:【問題提出】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=8,AE=2AD,由三角形三邊關(guān)系定理得出12-8<2AD<12+8,求出即可;
【初步運(yùn)用】延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可;
【靈活運(yùn)用】延長FD至G,使得DG=DF,連接BG、EG,根據(jù)SAS證△FDC≌△GDB,由全等三角形的性質(zhì)得到CF=BG,∠FCD=∠GBD,由線段垂直平分線的性質(zhì)得EF=EG,由同角的余角相等證∠EBG=90°,在Rt△EBG中用勾股定理即可得證.
試題解析:
【問題提出】(1)∵在△ADC和△EDB中,AD=DE,∠ADC=∠BDE,BD=CD,
∴△ADC≌△EDB(SAS),
故選B;
(2)∵由(1)知:△ADC≌△EDB,
∴BE=AC=8,AE=2AD,
∵在△ABE中,AB=12,由三角形三邊關(guān)系定理得:128<2AD<12+8,
∴2<AD<10,
故答案為:2<AD<10;
【初步運(yùn)用】
如圖,延長AD到M,使DM=AD,連接BM
∵AD是△ABC中線
∴BD=DC
又∵∠ADC=∠MDB
∴△ADC≌△MDB
∴BM=AC,∠CAD=∠M
∵AE=EF
∴∠CAD=∠AFE
∵∠AFE=∠BFD
∴∠BFD=∠CAD=∠M
∴BF=BM=AC=3+2=5;
【靈活運(yùn)用】
猜想:BE2+CF2=EF2
理由:如圖,延長FD至G,使得DG=DF,連接BG、EG,則△FDC≌△GDB.
∴CF=BG,∠FCD=∠GBD,
∵DF=DG,DE⊥DF,
∴EF=EG,
在△ABC中,∵∠A=90°,
∴∠EBC+∠FCB=90°,
∴∠EBC+∠GBD=90°,即∠EBG=90°,
∴在Rt△EBG中,BE2+BG2=EG2,
∴BE2+CF2=EF2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),AE和BF交于點(diǎn)P.如圖,點(diǎn)點(diǎn)同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點(diǎn)C;且∠ACB=60°時(shí),有以下兩個(gè)結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時(shí):
(1)點(diǎn)點(diǎn)發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點(diǎn)Q為線段AE上一點(diǎn),QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,折疊長方形一邊AD,點(diǎn)D落在BC邊的點(diǎn)F處, 已知BC=10厘米,AB=8厘米,求FC和EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P從點(diǎn)O出發(fā),按逆時(shí)針方向沿周長為l的圖形運(yùn)動(dòng)一周,O,P兩點(diǎn)間的距離y與點(diǎn)P走過的路程x的函數(shù)關(guān)系如圖,那么點(diǎn)P所走的圖形是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)=3.
(2)(y+2)2=(3y﹣1)2.
(3)(x﹣2)(x+5)=8.
(4)(2x+1)2=﹣6x﹣3.
(5)2x2﹣3x﹣2=0.
(6)4x2﹣12x﹣1=0(配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為5,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)D在直線AB上.
(1)如圖(1),已知∠BCD=∠BAC,求證:CD是⊙O的切線;
(2)如圖(2),CD與⊙O交于另一點(diǎn)E.BD:DE:EC=2:3:5,求圓心O到直線CD的距離;
(3)若圖(2)中的點(diǎn)D是直線AB上的動(dòng)點(diǎn),點(diǎn)D在運(yùn)動(dòng)過程中,會(huì)出現(xiàn)C,D,E在三點(diǎn)中,其中一點(diǎn)是另外兩點(diǎn)連線的中點(diǎn)的情形,問這樣的情況出現(xiàn)幾次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn):如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.當(dāng)點(diǎn)A位于什么上時(shí),線段AC的長取得最大值,且最大值為多少(用含a,b的式子表示)
(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請(qǐng)找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(6,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫出線段AM長的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com