【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面;

B方法:剪4個側(cè)面和5個底面.

現(xiàn)有38張硬紙板,裁剪時x張用A方法,其余用B方法.

(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

(2)若裁剪出的側(cè)面和底面恰好全部用完,則能做多少個盒子?

【答案】(1)側(cè)面(2x+152)個,底面(190-5x)個;(2)60個.

【解析】

1)由x張用A方法,可得有(38-x)張用B方法,就可以分別表示出側(cè)面?zhèn)數(shù)和底面?zhèn)數(shù);
2)由側(cè)面?zhèn)數(shù)和底面?zhèn)數(shù)比為32建立方程求出x的值,求出側(cè)面的總數(shù)就可以求出結(jié)論.

解:(1)∵裁剪時x張用A方法,
∴裁剪時(38-x)張用B方法.
∴側(cè)面的個數(shù)為:6x+438-x=2x+152)個,
底面的個數(shù)為:538-x=190-5x)個;
2)由題意,得(2x+152):(190-5x=32,
解得:x=14,
∴盒子的個數(shù)為:
答:裁剪出的側(cè)面和底面恰好全部用完,能做60個盒子.

故答案為:(1)側(cè)面(2x+152)個,底面(190-5x)個;(260.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線相交于A2,1)、B兩點.

1)求mk的值;

2)不解關(guān)于xy的方程組直接寫出點B的坐標;

3)直線經(jīng)過點B嗎?請說明理由.

【答案】1m=1,k=2;(2)(-1,-2);(3)經(jīng)過

【解析】試題分析:(1)把A2,1)分別代入直線與雙曲線即可求得結(jié)果;

2)根據(jù)函數(shù)圖象的特征寫出兩個圖象的交點坐標即可;

3)把x=1,m=1代入即可求得y的值,從而作出判斷.

1)把A2,1)分別代入直線與雙曲線的解析式得m=1,k=2

2)由題意得B的坐標(-1,-2);

3)當(dāng)x=1,m=1代入y=2×(1)+4×(1)=24=2

所以直線經(jīng)過點B(1,-2).

考點:反比例函數(shù)的性質(zhì)

點評:反比例函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點,是中考常見題,一般難度不大,需熟練掌握.

型】解答
結(jié)束】
20

【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣球,當(dāng)溫度不變時,氣球內(nèi)氣球的壓力p(千帕)是氣球的體積V(2)的反比例函數(shù),其圖象如圖所示(千帕是一種壓強單位)

1)寫出這個函數(shù)的解析式;

2)當(dāng)氣球的體積為0.8立方米時,氣球內(nèi)的氣壓是多少千帕;

3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈,為了安全起見,氣球的體積應(yīng)不小于多少立方米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給定關(guān)于 的二次函數(shù)
學(xué)生甲:當(dāng) 時,拋物線與 軸只有一個交點,因此當(dāng)拋物線與 軸只有一個交點時, 的值為3;
學(xué)生乙:如果拋物線在 軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學(xué)生甲、乙的觀點是否正確,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號得正,異號得負,得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為

1)探究:解不等式

2)應(yīng)用:不等式 的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有形狀、大小和質(zhì)地都相同的四張卡片,,,,正面上分別寫有四個實數(shù),,,將這四張卡片背面向上洗勻,從中隨機抽取一張(不放回),接著再隨機抽取一張.

1)畫樹形圖或列表法表示抽取兩張卡片可能出現(xiàn)的所有情況(卡片可用、、表示);

2)求取到的兩個數(shù)都是無理數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下題和解題過程:化簡,使結(jié)果不含絕對值.

解:當(dāng)時,即時,

原式

當(dāng),即時,

原式

這種解題的方法叫分類討論法

(1)請你用分類討論法解一元一次方程:;

(2)試探究:當(dāng)分別為何值時,方程

①無解,②只有一個解,③有兩個解

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場部分平面圖如圖所示,C、E、A在同一直線上,D、E、B在同一直線上,測得A處與E處的距離為80 米,C處與D處的距離為34米,∠C=90°,∠ABE=90°,∠BAE=30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:長方形ABCD中,點EBC邊的中點,將D折起,使點D落在點E處.

1)請你用尺規(guī)作圖畫出折痕和折疊后的圖形.(不要求寫已知,求作和作法,保留作圖痕跡)

2)若折痕與AD、BC分別交于點M、N,與DE交于點O,求證△MDO≌△NEO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線,把的直角三角板的直角頂點放在直線.將直角三角板在平面內(nèi)繞點任意轉(zhuǎn)動,若轉(zhuǎn)動的過程中,直線與直線的夾角為60°,則的度數(shù)為___.

查看答案和解析>>

同步練習(xí)冊答案