【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于O點、A點,B為拋物線上一點,C為y軸上一點,連接BC,且BC//OA,已知點O(0,0),A(6,0),B(3,m),AB=.
(1)求B點坐標(biāo)及拋物線的解析式.,
(2)M是CB上一點,過點M作y軸的平行線交拋物線于點E,求DE的最大值;
(3)坐標(biāo)平面內(nèi)是否存在一點F,使得以C、B、D、F為頂點的四邊形是菱形?若存在,求出符合條件的點F坐標(biāo);若不存在,請說明理由.
【答案】(1)B(6,0),y=;(2);(3) 滿足條件的F點共3個:,,
【解析】分析:(1)運用勾股定理求出m的值,根據(jù)題意得點B為拋物線的頂點,設(shè)設(shè)拋物線為,即可求解;
(2)可求,設(shè)E,則D(,故DE=,從而可得結(jié)果;
(3)設(shè)F,根據(jù)菱形的判定分三種情況進(jìn)行討論計算即可得解.
詳解:(1)如圖,過點B作BG⊥OA于G,
由A(6,0),O(0,0)知拋物線對稱軸為直線,
∴點B為拋物線的頂點。
∴AG=OG=3,
∴,即,
解得,
∴B(3,6),
設(shè)拋物線為,過點B(6,0),
∴9a+6=0
∴a=-,
∴y=-(x-3)2+6=-x2+4x;
(2)可求,設(shè)E,則D(,
∴DE=,
∴當(dāng)x=,DE最大=.
(3)設(shè)F,
①當(dāng)CD為菱形對角線時,
∵FD∥BC,
∴
∴
解得(舍去),.
②當(dāng)BD為菱形對角線時,
∴
∴,(舍去)
③當(dāng)BC為菱形對角線時,D、F均在BC的垂直平分線上,且FP=PD,
則,則D(,則PD=3,則,,。
綜上所述,滿足條件的F點共3個:,,。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃組織全校1500名師生外出參加集體活動.經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?/span>60輛、兩種型號客車作為交通工具.
下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:
型號 | 載客量 | 租金單價 |
30人輛 | 400元輛 | |
20人輛 | 300元輛 |
注:載客量指的是每輛客車最多可載該校師生的人數(shù).
學(xué)校租用型號客車輛,租車總費用為元.
(1)求與的函數(shù)解析式,請直接寫出的取值范圍;
(2)若要使租車總費用不超過22000元,一共有幾種租車方案?并結(jié)合函數(shù)性質(zhì)說明哪種租車方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(,0)是軸上的一個動點,它與原點的距離的2倍為.
(1)求關(guān)于的函數(shù)解析式,并在所給網(wǎng)格中畫出這個函數(shù)圖象;
(2)若反比例函數(shù)=的圖象與函數(shù)的圖象相交于點,且點的縱坐標(biāo)為2.
①求k的值;
②結(jié)合圖象,當(dāng)>時,寫出的取值范圍.
(3)過原點的一條直線交=(>0)于、兩點(點在點的右側(cè)),分別過點、作軸和軸的平行線,兩平行線交于點,則△的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側(cè)作等邊△ADE.求∠DCE的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算
① 8+(-1)-6-(-1.25);
②()×(﹣36);
③﹣24+ 6×(﹣)+(﹣6)× ;
④ 5+15÷(-3)2×[-(-1)4]-2.
(2)先化簡,再求值:求 的值,其中x﹦,y = -1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上A、B、C三點分別對應(yīng)實數(shù)a、1、c,且BC-AB=AC.下列選項中,滿足A、B、C三點在數(shù)軸上的位置關(guān)系是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)庫存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨修完這些桌椅比乙單獨修完多用20天,學(xué)校每天付甲組80元修理費,付乙組120元修理費。
(1)該中學(xué)庫存多少套桌椅?
(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費,現(xiàn)有三種修理方案:a、由甲單獨修理;b、由乙單獨修理;c、甲、乙合作同時修理。你認(rèn)為哪種方案省時又省錢?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長為多少?
(3)連接OD,OE,當(dāng)∠DOE=90°時,AE恰好是⊙O內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com