【題目】(1)觀察猜想

如圖①點B、A、C在同一條直線上,DBBC,ECBC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為;

(2)問題解決

如圖②,在RtABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰RtDAC,連結(jié)BD,求BD的長;

(3)拓展延伸

如圖③,在四邊形ABCD中,∠ABC=ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.

【答案】(1)BC=BD+CE,(2);(3).

【解析】

(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關(guān)系;

(2)過DDEAB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,RtBDE中,BE=6,根據(jù)勾股定理即可得到BD的長;

(3)過DDEBCE,作DFABF,證明△CED≌△AFD,根據(jù)全等三角形的性質(zhì)得到CE=AF,ED=DF,設(shè)AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出

的值,根據(jù)勾股定理即可求出BD的長.

解:(1)觀察猜想

結(jié)論: BC=BD+CE,理由是:

如圖①,∵∠B=90°,DAE=90°,

∴∠D+DAB=DAB+EAC=90°,

∴∠D=EAC,

∵∠B=C=90°,AD=AE,

∴△ADB≌△EAC,

BD=AC,EC=AB,

BC=AB+AC=BD+CE;

(2)問題解決

如圖②,過DDEAB,交BA的延長線于E,

由(1)同理得:△ABC≌△DEA,

DE=AB=2,AE=BC=4,

RtBDE中,BE=6,

由勾股定理得:

(3)拓展延伸

如圖③,過DDEBCE,作DFABF,

同理得:△CED≌△AFD,

CE=AF,ED=DF,

設(shè)AF=x,DF=y,

,解得:

BF=2+1=3,DF=3,

由勾股定理得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一組方程:①,②,③,…小明通過觀察,發(fā)現(xiàn)了其中蘊含的規(guī)律,并順利地求出了前三個方程的解第①個方程的解為;第②個方程的解為;第③個方程的解為.若n為正整數(shù),且關(guān)于x的方程的一個解是,則n的值等于____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC.以AB為直徑的⊙O分別與BC、AC相交于點D、E,連接AD.過點DDFAC,垂足為點F

(1)求證:DF是⊙O的切線;

(2)若⊙O的半徑為4,∠CDF22.5°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為了改造小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻的最大可使用長度12m)的空地上建造一個矩形綠化帶.除靠墻一邊(AD)外,用長為32m的柵欄圍成矩形ABCD.設(shè)綠化帶寬ABxm,面積為Sm2,

1)求Sx的函數(shù)關(guān)系式,并直接寫出x的取值范圍;

2)綠化帶的面積能達(dá)到128m2嗎?若能,請求出AB的長度;若不能,請說明理由;

3)當(dāng)x為何值時,滿足條件的綠化帶面積最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)開展寒假爭星活動,學(xué)生可以從自理星”、“讀書星”、“健康星”、“孝敬星等中選一個項目參加爭星競選,根據(jù)該校一年級某班學(xué)生的爭星報名情況,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息回答下列問題:

(1)參加調(diào)查的學(xué)生共有   人.

(2)將條形統(tǒng)計圖補充完整;

(3)請計算扇形統(tǒng)計圖中讀書星對應(yīng)的扇形圓心角度數(shù);

(4)根據(jù)調(diào)查結(jié)果,試估計該小學(xué)全校3600名學(xué)生中爭當(dāng)健康星的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)ykxb(k0)的圖象與y軸交于點C,與反比例函數(shù)y的圖象交于AB兩點,過點BBEx軸于點E,已知A點坐標(biāo)是(2,4),BE2

(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)連接OA、OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在水平地面點A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點為B,有人在直線AB上點C(靠點B一側(cè))豎直向上擺放若干個無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).當(dāng)豎直擺放圓柱形桶至少( )個時,網(wǎng)球可以落入桶內(nèi).

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC

1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;

2)若點P在線段AB上,如圖2,當(dāng)點PAB的中點時,判斷ACE的形狀,并說明理由;

3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過程中ACE面積的最小值為4,請直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ly=﹣3x+3x軸、y軸分別相交于AB兩點,拋物線yax22ax+a+4a0)經(jīng)過點B

1)求該拋物線的函數(shù)表達(dá)式;

2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求Sm的函數(shù)表達(dá)式,并求出S的最大值;

3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.寫出點M′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案