如圖,△ABC中,AB=AC=13,BC=10,AD是BC邊上的中線,F(xiàn)是AD上的動點,E是AC邊上的動點,則CF+EF的最小值為________.


分析:作E關于AD的對稱點M,連接CM交AD于F,連接EF,過C作CN⊥AB于N,根據(jù)三線合一定理求出BD的長和AD⊥BC,根據(jù)勾股定理求出AD,根據(jù)三角形面積公式求出CN,根據(jù)對稱性質求出CF+EF=CM,根據(jù)垂線段最短得出CF+EF≥,即可得出答案.
解答:
作E關于AD的對稱點M,連接CM交AD于F,連接EF,過C作CN⊥AB于N,
∵AB=AC=13,BC=10,AD是BC邊上的中線,
∴BD=DC=5,AD⊥BC,AD平分∠BAC,
∴M在AB上,
在Rt△ABD中,由勾股定理得:AD==12,
∴S△ABC=×BC×AD=×AB×CN,
∴CN===,
∵E關于AD的對稱點M,
∴EF=FM,
∴CF+EF=CF+FM=CM,
根據(jù)垂線段最短得出:CM≥CN,
即CF+EF≥
即CF+EF的最小值是,
故答案為:
點評:本題考查了平面展開-最短路線問題,關鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案