【題目】如圖1,在平面直角坐標(biāo)系中,直線l1:y=2x+8與坐標(biāo)軸分別交于A,B兩點(diǎn),點(diǎn)C在x正半軸上,且OA=OC.點(diǎn)P為線段AC(不含端點(diǎn))上一動點(diǎn),將線段OP繞點(diǎn)O逆時針旋轉(zhuǎn)90°,得線段OQ(見圖2)
(1)分別求出點(diǎn)B、點(diǎn)C的坐標(biāo);
(2)如圖2,連接AQ,求證:∠OAQ=45°;
(3)如圖2,連接BQ,試求出當(dāng)線段BQ取得最小值時點(diǎn)Q的坐標(biāo).
【答案】(1)B(-4,0),C(8,0);(2)詳見解析;(3)點(diǎn)Q坐標(biāo)為(-6,2).
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)只要證明△OAQ≌△OPC,可得∠OAQ=∠OCP=45°;
(3)因?yàn)椤?/span>OAQ=45°,設(shè)直線AQ交x軸與E,則點(diǎn)Q在直線AE上 運(yùn)動,根據(jù)垂線段最短可知當(dāng)BQ⊥AE時,BQ的長最短,求出直線AE、BQ的解析式,利用方程組確定交點(diǎn)Q的坐標(biāo)即可;
解:(1)對于直線y=2x+8令x=0得到y=8,令y=0,得到x=-4,
∴A(0,8),B(-4,0),
∴OA=OC=8,
∴C(8,0).
(2)由旋轉(zhuǎn)可知,OP=OQ,∠POQ=∠AOC=90°,
∴∠AOQ=∠COP,
在△AOQ和△COP中,
,
∴△OAQ≌△OPC,
∴∠OAQ=∠OCP,
∵OA=OC,∠AOC=90°,
∴∠OCA=45°,
∴∠OAQ=45°.
(3)如圖2中,
∵∠OAQ=45°,設(shè)直線AQ交x軸與E,則點(diǎn)Q在直線AE上運(yùn)動,
∵A(0,8),E(-8,0),
∴直線AE的解析式為y=x+8,
根據(jù)垂線段最短可知當(dāng)BQ⊥AE時,BQ的長最短,
∵BQ⊥AE,
∴直線BQ的解析式為y=-x-4,
由,解得,
∴當(dāng)BQ最短時,點(diǎn)Q坐標(biāo)為(-6,2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.
(1)平移線段到線段,使點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);
(2)平移線段到線段,使點(diǎn)在軸的正半軸上,點(diǎn)在第二象限內(nèi)(與對應(yīng), 與對應(yīng)),連接如圖2所示.若表示△BCD的面積),求點(diǎn)、的坐標(biāo);
(3)在(2)的條件下,在軸上是否存在一點(diǎn),使表示△PCD的面積)?若存在,求出點(diǎn)的坐標(biāo); 若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長交BA的延長線于點(diǎn)F,交AD于點(diǎn)E,連接AG.
(1)求證:AG=CG;
(2)求證:AG2=GE·GF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=2,AC=4.對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時針旋轉(zhuǎn)α°,分別交直線BC、AD于點(diǎn)E、F.
(1)當(dāng)α= °,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個點(diǎn)為頂點(diǎn)構(gòu)造四邊形.
①α= °,構(gòu)造的四邊形是菱形;
②若構(gòu)造的四邊形是矩形,求出該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y(米)與時間x(分鐘)的關(guān)系如圖.請結(jié)合圖象,解答下列問題:
(1)填空:a=________;b=________;m=________.
(2)若小軍的速度是 120 米/分,求小軍第二次與爸爸相遇時距圖書館的距離.
(3)在(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時間后與小軍相距100 米,此時 小軍騎行的時間為________分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A,B兩點(diǎn),與雙曲線y2=(x>0)交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①當(dāng)x>0時,y1隨x的增大而增大,y2隨x的增大而減;②;③當(dāng)0<x<2時,y1<y2;④如圖,當(dāng)x=4時,EF=4.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°
(1)觀察猜想
將圖1中的三角尺OCD沿AB的方向平移至圖②的位置,使得點(diǎn)O與點(diǎn)N重合,CD與MN相交于點(diǎn)E,則∠CEN= 度.
(2)操作探究
將圖1中的三角尺OCD繞點(diǎn)O按順時針方向旋轉(zhuǎn),使一邊OD在∠MON的內(nèi)部,如圖3,且OD恰好平分∠MON,CD與NM相交于點(diǎn)E,求∠CEN的度數(shù);
(3)深化拓展
將圖1中的三角尺OCD繞點(diǎn)O按沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,若邊CD恰好與邊MN平行,請你求出此時旋轉(zhuǎn)的角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖中給出的伯,解容下列問題
(I)放入一個小球水面升高____cm,放入一個大球水面升高_____cm
(2)如果放入10個球,使水面上升到50cm,應(yīng)放入大球、小像各多少個?
(3)現(xiàn)放入干個球,使水面升高2lcm,且小球個數(shù)為偶數(shù)個,問有幾種可能,請一一列出(寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高節(jié)水意識,小明隨機(jī)統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)
每天用水折線統(tǒng)計圖 第3天用水情況條形統(tǒng)計圖
(1)填空:這7天內(nèi)小明家里每天用水量的平均數(shù)為 升、中位數(shù)為 升;
(2)求第3天小明家淋浴的水占這一天總用水量的百分比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com