在直徑為650mm的圓柱形油罐內(nèi)裝進(jìn)一些油后,其橫截面如圖,若油面寬AB=600mm,求油的最大深度.

【答案】分析:首先過點(diǎn)O作OD⊥AB于點(diǎn)C,交⊙O于點(diǎn)D,連接OA,由垂徑定理即可求得AC的長(zhǎng),然后由勾股定理,求得OC的長(zhǎng),繼而求得油的最大深度.
解答:解:過點(diǎn)O作OD⊥AB于點(diǎn)C,交⊙O于點(diǎn)D,連接OA,
由垂徑定理得:AC=AB=×600=300(mm),
在Rt△ACO中,AC2+OC2=AO2
∴3002+OC2=3252,
解得:OC=125mm,
∴CD=OD-OC=325-125=200(mm).
答:油的最大深度是200mm.
點(diǎn)評(píng):此題考查了垂徑定理與勾股定理的應(yīng)用.此題難度不大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在直徑為650mm的圓柱形油罐內(nèi)裝進(jìn)一些油后,其橫截面如圖,若油面寬AB=600mm,求油的最大深度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件,市場(chǎng)調(diào)查反映,如調(diào)整價(jià)格,每漲價(jià)1元,每星期要少賣出10件.已知商品的進(jìn)價(jià)為每件40元,如何定價(jià)才能使利潤(rùn)最大?設(shè)每件漲價(jià)x元,每星期售出商品的利潤(rùn)y元,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.
(2)在直徑為650mm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,若油面寬AB=600mm,求油的最大深度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直徑為650mm的圓柱型油罐內(nèi)裝進(jìn)一些油后,其橫截面(如圖)油面寬為600mm,求油的最大深度
175或425
175或425
mm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇揚(yáng)州寶應(yīng)中南片七所學(xué)校初三12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

在直徑為650mm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,若油面寬AB=600mm,求油的最大深度.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006-2007學(xué)年福建省福州市時(shí)代中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(1)某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件,市場(chǎng)調(diào)查反映,如調(diào)整價(jià)格,每漲價(jià)1元,每星期要少賣出10件.已知商品的進(jìn)價(jià)為每件40元,如何定價(jià)才能使利潤(rùn)最大?設(shè)每件漲價(jià)x元,每星期售出商品的利潤(rùn)y元,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.
(2)在直徑為650mm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,若油面寬AB=600mm,求油的最大深度.

查看答案和解析>>

同步練習(xí)冊(cè)答案