(2010•陜西)中國2010年上海世博會充分體現(xiàn)“城市,讓生活更美好”的主題.據(jù)統(tǒng)計5月1日至5月7日入園數(shù)(單位:萬人)分別為:20.3,21.5,13.2,14.6,10.9,11.3,13.9.這組數(shù)據(jù)中的中位數(shù)和平均數(shù)分別為( )
A.14.6,15.1
B.14.65,15.0
C.13.9,15.1
D.13.9,15.0
【答案】分析:本題考查統(tǒng)計的有關(guān)知識,找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù).
這幾個數(shù)的和,除以數(shù)據(jù)的個數(shù)為平均數(shù).
解答:解:將這組數(shù)據(jù)從小到大的順序排列為(10.9,11.3,13.2,13.9,14.6,20.3,21.5),處在中間的是13.9,因此中位數(shù)13.9.
平均數(shù)為=15.1.
故選C.
點評:本題考查的是中位數(shù)和平均數(shù)的定義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(11)(解析版) 題型:解答題

(2010•陜西)問題探究:
(1)請你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點M是矩形ABCD內(nèi)一點,請你在圖②中過點M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務管理委員會(其占地面積不計)設在點P(4,2)處.為了方便駐區(qū)單位準備過點P修一條筆直的道路(路寬不計),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認為直線l是否存在?若存在,求出直線l的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•陜西)如圖,在平面直角坐標系中,拋物線A(-1,0),B(3,0),C(0,-1)三點.
(1)求該拋物線的表達式;
(2)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,求所有滿足條件點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•陜西)問題探究:
(1)請你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點M是矩形ABCD內(nèi)一點,請你在圖②中過點M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務管理委員會(其占地面積不計)設在點P(4,2)處.為了方便駐區(qū)單位準備過點P修一條筆直的道路(路寬不計),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認為直線l是否存在?若存在,求出直線l的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年陜西省中考數(shù)學試卷(解析版) 題型:解答題

(2010•陜西)問題探究:
(1)請你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點M是矩形ABCD內(nèi)一點,請你在圖②中過點M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務管理委員會(其占地面積不計)設在點P(4,2)處.為了方便駐區(qū)單位準備過點P修一條筆直的道路(路寬不計),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認為直線l是否存在?若存在,求出直線l的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年陜西省中考數(shù)學試卷(解析版) 題型:解答題

(2010•陜西)如圖,在平面直角坐標系中,拋物線A(-1,0),B(3,0),C(0,-1)三點.
(1)求該拋物線的表達式;
(2)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,求所有滿足條件點P的坐標.

查看答案和解析>>

同步練習冊答案