【題目】在數(shù)學(xué)課上,愛動腦筋的小孫同學(xué)提出了一個問題:已知線段AB和直線L,他想作一個頂點P在直線上L的特殊的,使得
經(jīng)過課堂討論,有的學(xué)習(xí)小組提出了如下尺規(guī)作圖方案:
分別以點A,點B為圓心,以線段AB的長度為半徑畫弧,兩條弧在線段AB上方相交于點O;
以O為圓心,OA為半徑作弧,與直線L相交于,兩點;
連接,,,,
所以,就是所求的角
請你根據(jù)上述尺規(guī)作圖方案,完成下列問題:
使用直尺和圓規(guī)補(bǔ)全圖形;保留作圖痕跡
完成下面的證明:
證明:在中,連接OA,OB,
為等邊三角形______填推理的依據(jù)
,
______填推理的依據(jù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.
(1)小球飛行時間是多少時,小球最高?最大高度是多少?
(2)小球飛行時間t在什么范圍時,飛行高度不低于15m?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點,其中A(1,2)
(1)求這兩個函數(shù)解析式;
(2)在y軸上求作一點P,使PA+PB的值最小,并直接寫出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,下面說法正確的個數(shù)是( 。﹤.
①若O是△ABC的外心,∠A=50°,則∠BOC=100°;
②若O是△ABC的內(nèi)心,∠A=50°,則∠BOC=115°;
③若BC=6,AB+AC=10,則△ABC的面積的最大值是12;
④△ABC的面積是12,周長是16,則其內(nèi)切圓的半徑是1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是
A. “打開電視機(jī),正在播NBA籃球賽”是必然事件
B. “擲一枚硬幣正面朝上的概率是”表示毎拋擲硬幣2次就必有1次反面朝上
C. 一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D. 甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時,求證:AD=DE;理由;
(2)如圖②,當(dāng)∠ABC=30°時,線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
(3)當(dāng)∠ABC=α時,請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中:
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過觀察、實驗提出猜想:在點P,Q運(yùn)動的過程中,始終有PA=PM,小茹把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某天然氣公司的主輸氣管道從A市的北偏東60°方向直線延伸,測繪員在A處測得要安裝天然氣的M小區(qū)在A市的北偏東30°方向,測繪員沿主輸氣管道步行1000米到達(dá)C處,測得小區(qū)M位于點C的北偏西75°方向,試在主輸氣管道AC上尋找支管道連接點N,使其到該小區(qū)鋪設(shè)的管道最短,并求AN的長.(精確到1米,≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(c>0)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC=3,頂點為M.
(1)求二次函數(shù)的解析式;
(2)點P為線段BM上的一個動點,過點P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點N,使△NMC為等腰三角形?如果存在,求出點N的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com