【題目】如圖,在△ABC中,AB=AC,DE是過點(diǎn)A的直線,BDDE于點(diǎn)D, CEDE 于點(diǎn) E.
(1)若BC在DE的同側(cè)(如圖所示),且AD=CE,求證:
(2)若B、C在的兩側(cè)(如圖所示 ),其他條件不變,AB與AC仍垂直嗎?若是請(qǐng)給出證明;若不是,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)AB⊥AC,證明見解析.
【解析】
(1)首先利用HL證明Rt△ABD≌Rt△CAE,得到∠DBA=∠EAC,然后根據(jù)∠DAB+∠DBA=90°,可得∠BAC=90°,問題得證;
(2)同(1)證明Rt△ABD≌Rt△CAE,得到∠DAB=∠ECA,然后根據(jù)∠CAE+∠ECA=90°,可得∠BAC=90°,問題得解.
(1)證明:∵BD⊥DE,CE⊥DE,
∴在Rt△ABD和Rt△CAE中,
∵,
∴Rt△ABD≌Rt△CAE(HL),
∴∠DBA=∠EAC,
∵∠DAB+∠DBA=90°,
∴∠DAB+∠EAC=90°,
∴∠BAC=90°,
∴AB⊥AC;
(2)AB⊥AC,
理由如下:
同(1)可證得Rt△ABD≌Rt△CAE,
∴∠DAB=∠ECA,
∵∠CAE+∠ECA=90°,
∴∠CAE+∠DAB=90°,即∠BAC=90°,
∴AB⊥AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是作一個(gè)角的角平分線的方法:以的頂點(diǎn)為圓心,以任意長(zhǎng)為半徑畫弧,分別交于兩點(diǎn),再分別以為圓心,大于長(zhǎng)為半徑作畫弧,兩條弧交于點(diǎn),作射線,過點(diǎn)作交于點(diǎn).
(1)若,求的度數(shù);
(2)若,垂足為,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE = AF
(1)求證:BE = DF;
(2)連接AC交EF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長(zhǎng)沙”的號(hào)召,我市某街道決定從備選的五種樹中選購(gòu)一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(dòng)(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為: ;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請(qǐng)你估計(jì)這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=kx+m的圖象經(jīng)過二次函數(shù)y=ax2+bx+c的頂點(diǎn),我們則稱這兩個(gè)函數(shù)為“丘比特函數(shù)組”
(1)請(qǐng)判斷一次函數(shù)y=﹣3x+5和二次函數(shù)y=x2﹣4x+5是否為“丘比特函數(shù)組”,并說明理由.
(2)若一次函數(shù)y=x+2和二次函數(shù)y=ax2+bx+c為“丘比特函數(shù)組”,已知二次函數(shù)y=ax2+bx+c頂點(diǎn)在二次函數(shù)y=2x2﹣3x﹣4圖象上并且二次函數(shù)y=ax2+bx+c經(jīng)過一次函數(shù)y=x+2與y軸的交點(diǎn),求二次函數(shù)y=ax2+bx+c的解析式;
(3)當(dāng)﹣3≤x≤﹣1時(shí),二次函數(shù)y=x2﹣2x﹣4的最小值為a,若“丘比特函數(shù)組”中的一次函數(shù)y=2x+3和二次函數(shù)y=ax2+bx+c(b、c為參數(shù))相交于PQ兩點(diǎn)請(qǐng)問PQ的長(zhǎng)度為定值嗎?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有兩點(diǎn)A(6,0),B(0,3),如果點(diǎn)C在x軸上(C與A不重合),當(dāng)點(diǎn)C的坐標(biāo)為 時(shí),△BOC與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,作AB⊥MN,垂足為點(diǎn)D,連接AM,AN,點(diǎn)C為弧AN上一點(diǎn).且弧AC=弧AM,連接CM,交AB于點(diǎn)E,交AN于點(diǎn)F,現(xiàn)給出以下結(jié)論:
①AD=BD;②∠MAN=90°;③弧AM =弧BM ;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),在建立的平面直角坐標(biāo)系中,△ABC繞旋轉(zhuǎn)中心P逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C1.
(1)在圖中標(biāo)示出旋轉(zhuǎn)中心P,并寫出它的坐標(biāo);
(2)以原點(diǎn)O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2,在圖中畫出△A2B2C2,并寫出C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷的某種商品,每件成本為元.經(jīng)市場(chǎng)調(diào)研,售價(jià)為元時(shí),可銷售件;售價(jià)每增加元,銷售量將減少件.如果這種商品全部銷售完,那么該商店可盈利元.問:該商店銷售了這種商品多少件?每件售價(jià)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com