如圖,△ABC是⊙O的內(nèi)接三角形,∠ACB=75°,∠A=65°,點(diǎn)P在劣弧數(shù)學(xué)公式上移動(dòng)(點(diǎn)P不與點(diǎn)A、C重合),則α的變化范圍是________.

0°<α<80°
分析:利用三角形內(nèi)角和定理求得∠B=40°;然后由“同弧所對(duì)的圓周角是所對(duì)的圓心角的一半”求得∠AOC=80°;所以根據(jù)當(dāng)點(diǎn)P分別與點(diǎn)A、C重合時(shí)取得最大值、最小值.
解答:解:如圖,連接OA,
∵△ABC是⊙O的內(nèi)接三角形,∠ACB=75°,∠A=65°,
∴∠B=40°(三角形內(nèi)角和定理);
又∵點(diǎn)P在劣弧上移動(dòng),∴當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),α最小值=0°;
而∠AOC=2∠B=80°(同弧所對(duì)的圓周角是所對(duì)的圓心角的一半),
當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),α最大值=∠AOC=80°,
∵點(diǎn)P不與點(diǎn)A、C重合,
∴α的變化范圍是0°<α<80°;
故答案是:0°<α<80°.
點(diǎn)評(píng):本題考查了圓周角定理.圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是邊長(zhǎng)為2的等邊三角形,將△ABC沿射線BC向右平移到△DCE,連接AD、BD,下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是銳角三角形,以BC為直徑作⊙O,AD是⊙O的切線,從AB上一點(diǎn)E作AB的垂線交AC的延長(zhǎng)線于F,若
AB
AF
=
AE
AC

求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•玉林)如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點(diǎn)M,N,DF交AC于點(diǎn)Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長(zhǎng)等于AC的長(zhǎng);④NQ=QC.其中正確的結(jié)論是
①②③
①②③
.(把所有正確的結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D是BC邊的中點(diǎn),點(diǎn)E在AC的延長(zhǎng)線上,且∠CDE=30°.若AD=5,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,則∠ABD=
120
120
度.

查看答案和解析>>

同步練習(xí)冊(cè)答案