如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8 cm,BC=6 cm,∠C=90°,EG=4 cm,∠EGF=90°,O是△EFG斜邊上的中點.

如圖②,若整個△EFG從圖①的位置出發(fā),以1 cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1 cm/s的速度在直角邊GF上向點F運動,當(dāng)點P到達點F時,點P停止運動,△EFG也隨之停止平移.設(shè)運動時間為x(s),F(xiàn)G的延長線交AC于H,(不考慮點P與G、F重合的情況).

(1)當(dāng)x為何值時,OP∥AC?

(2)你能不能用含x的式子來表示四邊形OAHP面積呢?若能,請表示;若不能,請說明理由.

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13∶24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

答案:
解析:

  (1)∵Rt△EFG∽Rt△ABC,∴,.∴FG==3 cm.

  ∵當(dāng)P為FG的中點時,OP∥EG,EG∥AC,∴OP∥AC.

  ∴x=×3=1.5(s).∴當(dāng)x為1.5 s時,OP∥AC.

  (2)在Rt△EFG中,由勾股定理得:EF=5 cm.

  ∵EG∥AH,∴△EFG∽△AFH.∴

  ∴.∴AH=(x+5),F(xiàn)H=(x+5).

  過點O作OD⊥FP,垂足為D.

  ∵點O為EF中點,∴OD=EG=2 cm.∵FP=3-x,

  ∴S四邊形OAHP=S△AFH-S△OFP·AH·FH-·OD·FP

  =x2x+3(0<x<3

  (3)假設(shè)存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13∶24.

  則S四邊形OAHP×S△ABC,∴x2x+3=××6×8,

  ∴6x2+85x-250=0,解得x1,x2=-(舍去).

  ∵0<x<3,

  ∴當(dāng)x=(s)時,四邊形OAHP面積與△ABC面積的比為13∶24.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(7分)有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(7分)有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省灌云縣穆圩中學(xué)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省黃岡市二月份中考摸底考試數(shù)學(xué)卷 題型:解答題

(7分)有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升

 

查看答案和解析>>

同步練習(xí)冊答案