精英家教網 > 初中數學 > 題目詳情
(2012•鼓樓區(qū)二模)已知:如圖,在△ABC中,∠ACB=90°,AD平分∠CAB,DE⊥AB,垂足為E,CD=ED.連接CE,交AD于點H.  
(1)求證:△ACD≌△AED;
(2)點F在AD上,連接CF,EF.現(xiàn)有三個論斷:①EF∥BC;②EF=FC;③CE⊥AD.請從上述三個論斷中選擇一個論斷作為條件,證明四邊形CDEF是菱形.
分析:(1)根據角平分線上的點到角的兩邊的距離相等可得CD=DE,然后利用“HL”定理即可證明;
(2)選擇①,先根據等腰三角形三線合一的性質證明AD垂直平分CE,再根據線段垂直平分線上的點到線段兩端點的距離相等可得EF=FC,DC=DE,再根據等邊對等角的性質可得∠CED=∠ECD,然后根據兩直線平行,內錯角相等可得∠FEC=∠ECD,從而求出∠EFD=∠EDF,再根據等角對等邊的性質得到EF=ED,然后利用四條邊都相等的四邊形是菱形即可證明.
解答:(1)證明:∵∠ACB=90°,∠CAB的平分線交BC于D,DE⊥AB,
∴CD=DE,
在Rt△ACD和Rt△AED中,
AD=AD
CD=DE
,
∴△ACD≌△AED(HL);

(2)選擇①EF∥BC.
證明如下:∵△ACD≌△AED,
∴AC=AE,
∵AD平分∠CAB,
∴AD垂直平分CE,
∴FC=FE,DC=DE,
∴∠CED=∠ECD,
∵EF∥BC,
∴∠FEC=∠ECD,
∴∠CED=∠FEC,
∴∠EFD=∠EDF,
∴EF=ED,
∴FC=FE=DC=DE,
∴四邊形FCDE為菱形.
點評:本題考查了菱形的判定,全等三角形的判定與性質,等腰三角形三線合一的性質,以及等角對等邊的性質,等邊對等角的性質,綜合題,但難度不大,熟練掌握各性質與判定方法是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•鼓樓區(qū)二模)化簡
16
的結果是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鼓樓區(qū)二模)把2456000保留3個有效數字,得到的近似數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鼓樓區(qū)二模)某班每位學生上、下學期各選擇一個社團,下表分別為該班學生上、下學期各社團的人數比例.若該班上、下學期的學生人數不變,關于上學期,下學期各社團的學生人數變化,下列敘述正確的是(  )
文學社 籃球社 動漫社
上學期 3 4 5
下學期 4 3 2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鼓樓區(qū)二模)不等式3-
2-3x
5
1+x
2
的解集為
x≤-21
x≤-21

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鼓樓區(qū)二模)一條排水管的截面如圖所示.已知排水管的截面圓半徑OB=10,截面圓圓心O到水面的距離OC是6,則水面寬AB是
16
16

查看答案和解析>>

同步練習冊答案