(2004•宿遷)如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的⊙O的切線交OA延長線于點R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PA=1,試求PQ的長.

【答案】分析:(I)要證明RP=RQ,需要證明∠PQR=∠RPQ,連接OQ,則∠OQR=90°;根據(jù)OB=OQ,得∠B=∠OQB,再根據(jù)等角的余角相等即可證明;
(II)延長AO交圓于點C,首先根據(jù)勾股定理求得BP的長,再根據(jù)相交弦定理求得QP的長即可.
解答:(Ⅰ)證法一:
連接OQ;
∵RQ是⊙O的切線,
∴∠OQB+∠BQR=90°.
∵OA⊥OB,
∴∠OPB+∠B=90°.
又∵OB=OQ,
∴∠OQB=∠B.
∴∠PQR=∠BPO=∠RPQ.
∴RP=RQ.
證法二:
作直徑BC,連接CQ;∵BC是⊙O的直徑,
∴∠B+∠C=90°.
∵OA⊥OB,
∴∠B+∠BPO=90°.
∴∠C=∠BPO.
又∠BPO=∠RPQ,
∴∠C=∠RPQ.
又∵RQ為⊙O的切線,
∴∠PQR=∠C.
∴∠PQR=∠RPQ.
∴RP=RQ.

(Ⅱ)解法一:
作直徑AC,
∵OP=PA=1,
∴PC=3.
由勾股定理,得BP==
由相交弦定理,得PQ•PB=PA•PC.
即PQ×=1×3,
∴PQ=
解法二:
作直徑AE,過R作RF⊥BQ,垂足為F,
設(shè)RQ=RP=x;
由切割線定理,得:x2=(x-1),(x+3)
解得:x=,
又由△BPO∽△RPF得:,
∴PF=
由等腰三角形性質(zhì)得:PQ=2PF=
點評:本題考查了切線的性質(zhì)、弦切角定理、等腰三角形的性質(zhì)、相交弦定理等知識的綜合應(yīng)用,考點較多,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2004•宿遷)如圖1,已知⊙O1、⊙O2內(nèi)切于點P,⊙O1的弦AB交⊙O2于C、D兩點,連接PA、PC、PD、PB,設(shè)PB與⊙O2交于點E.
(Ⅰ)求證:PA•PE=PC•PD;
(Ⅱ)若將題中“⊙O1、⊙O2內(nèi)切于點P”改為“⊙O1、⊙O2外切于點P”,其它條件不變,如圖2,那么(Ⅰ)中的結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(02)(解析版) 題型:選擇題

(2004•宿遷)如圖,在下列三角形中,若AB=AC,則能被一條直線分成兩個小等腰三角形的是( )

A.(1)(2)(3)
B.(1)(2)(4)
C.(2)(3)(4)
D.(1)(3)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省宿遷市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•宿遷)如圖是一塊帶有圓形空洞和方形空洞的小木板,則下列物體中既可以堵住圓形空洞,又可以堵住方形空洞的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省宿遷市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•宿遷)如圖,在下列三角形中,若AB=AC,則能被一條直線分成兩個小等腰三角形的是( )

A.(1)(2)(3)
B.(1)(2)(4)
C.(2)(3)(4)
D.(1)(3)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省宿遷市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•宿遷)如圖,直線a、b被直線c所截,若a∥b,∠1=130°,則∠2等于( )

A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

同步練習(xí)冊答案