如圖A,B,C,D四點在同一圓周上,且BC=DC=4,AE=6,線段BE、DE的長為正整數(shù),求BD的長.

解:∵BC=CD,
∴∠BAC=∠DAC,
∵∠DBC=∠DAC,
∴∠BAC=∠DBC,
又∵∠BCE=∠ACB,
∴△ABC∽△BEC,
∴BC2=CE•AC,
∵BC=CD=4,AE=6,
∴EC=2,
由相交弦定理得,BE•DE=AE•EC,
即BE•DE=12,
又線段BE、ED為正整數(shù),
且在△BCD中,BC+CD>BE+DE,
所以可得BE=3、DE=4或BE=4、DE=3,
所以BD=BE+DE=7.
故答案為:7.
分析:根據(jù)已知條件,易證△ABC∽△BEC,所以BC2=CE•AC,即可求得EC=2,利用相交弦定理,可以確定BE•DE=12,又線段BE、ED為正整數(shù),且在△BCD中,BC+CD>BE+DE,所以可得BE=3、DE=4或BE=4、DE=3,所以BD=7.
點評:本題結(jié)合三角形的面積考查了相交弦定理,即“圓內(nèi)兩弦相交于圓內(nèi)一點,各弦被這點所分得的兩線段的長的乘積相等”.熟記并靈活應(yīng)用定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,一個經(jīng)過改造的臺球桌面上四個角的陰影部分分別表示四個入球孔,如果一個球按圖中所示的方向被擊出(球可以經(jīng)過多次反射),那么該球最后將落入
1
號球袋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大慶)如圖所示,將一個圓盤四等分,并把四個區(qū)域分別標(biāo)上I、Ⅱ、Ⅲ、Ⅳ,只有區(qū)域I為感應(yīng)區(qū)域,中心角為60°的扇形AOB繞點0轉(zhuǎn)動,在其半徑OA上裝有帶指示燈的感應(yīng)裝置,當(dāng)扇形AOB與區(qū)域I有重疊(原點除外)的部分時,指示燈會發(fā)光,否則不發(fā)光,當(dāng)扇形AOB任意轉(zhuǎn)動時,指示燈發(fā)光的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河北一模)平面上有且只有4個點,這4個點中有一個獨特的性質(zhì):連接每兩點可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點稱作準(zhǔn)等距點.例如正方形ABCD的四個頂點(如圖1),有AB=BC=CD=DA,AC=BD.其實滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點,滿足AB=BC=CA,OA=OB=OC.
(1)如圖3,若等腰梯形ABCD的四個頂點是準(zhǔn)等距點,且AD∥BC.寫出相等的線段(不再添加字母);
(2)利用(1)的結(jié)論,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為美化環(huán)境,將在一塊正方形的土地上栽種4種不同的植物,現(xiàn)將土地分為四塊分割后的圖形是軸對稱圖形形狀相同面積相等現(xiàn)已有兩種不同分法:分別做兩條對角線,如圖1;過一條邊的四等分點作這邊的垂線段,如圖2(圖中兩個圖形的分割看作同一方法).請你按照上述三個要求,分別在圖3兩個正方形中給出另外兩種不同的分割方法.(正確畫圖,不寫畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在長方形紙片ABCD中,四個內(nèi)角均為直角,AB=CD,AD=BC,將長方形紙片ABCD沿對角線BD進(jìn)行折疊,點C的對稱點為C′,BC′交AD于點E.
(1)五邊形ABDC′E
軸對稱圖形(填“是”或“不是”);
(2)試說明△ABE≌△C′DE;
(3)關(guān)于某條直線成軸對稱的圖形有幾對,直接寫出這幾對成軸對稱的圖形.

查看答案和解析>>

同步練習(xí)冊答案