如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷△ABC的形狀,證明你的結論;

(3)點M(m,0)是x軸上的一個動點,當CM+DM的值最小時,求m的值.

解:(1)∵點A(-1,0)在拋物線y=x2+bx-2上,

×(-1)2+b×(-1)-2=0,b=-

∴拋物線的解析式為y=x2-x-2.          

y=x2-x-2=(x2-3x-4)=(x-)2-,

∴頂點D的坐標為 (,-).                

(2)當x=0時y=-2, ∴C(0,-2),OC=2。

當y=0時,x2-x-2=0,∴x1=-1,x2=4, ∴B(4,0). 

∴OA=1,OB=4,AB=5.

∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,

∴AC2+BC2=AB2.∴△ABC是直角三角形.       

(3) 作出點C關于x軸的對稱點C′,則C′(0,2),O C′=2

連接C′D交x軸于點M,

根據(jù)軸對稱性及兩點之間線段最短可知,MC+MD的值最小。

解法一:設拋物線的對稱軸交x軸于點E.

∵ED∥y軸, ∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.

=

=,∴m=   

解法二:設直線的解析式為y=kx+n,

,解得n=-2,k=-.

∴y=-x+2.

∴當y=0時, -x+2=0,

x=.     ∴m=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:江蘇中考真題 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3.
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉(zhuǎn)90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學試卷(帶解析) 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動. 設點P的橫坐標為t .

(1)點Q的橫坐標是         (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學試卷(解析版) 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動. 設點P的橫坐標為t .

(1)點Q的橫坐標是         (用含t的代數(shù)式表示);

(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省儀征市九年級上學期末考試數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于點A、B(點A在點B左側),與y軸交于點C(0,-3),且拋物線的對稱軸是直線x=1.

(1)求b的值;

(2)點E是y軸上一動點,CE的垂直平分線交y軸于點F,交拋物線于P、Q兩點,且點P在第三象限.當線段PQ = AB時,求點E的坐標;

(3)若點M在射線CA上運動,過點M作MN⊥y軸,垂足為N,以M為圓心,MN為半徑作⊙M,當⊙M與x軸相切時,求⊙M的半徑.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省蘇州工業(yè)園區(qū)九年級上學期期中測試數(shù)學卷 題型:選擇題

如圖,拋物線y=x2+1與雙曲線y=的交點A的橫坐標是1,則關于x的不等式+x2+1 < 0的解集是( ▲ )

A.x>1            B.x<−1            C.0<x<1          D.−1<x<0

 

查看答案和解析>>

同步練習冊答案