【題目】如圖是由射線組成的平面圖形,則++++=_____.
【答案】360°
【解析】分析:首先根據圖示,可得∠1=180°-∠BAE,∠2=180°-∠ABC,∠3=180°-∠BCD,∠4=180°-∠CDE,∠5=180°-∠DEA,然后根據三角形的內角和定理,求出五邊形ABCDE的內角和是多少,再用180°×5減去五邊形ABCDE的內角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.
詳解:∠1+∠2+∠3+∠4+∠5
=(180°-∠BAE)+(180°-∠ABC)+(180°-∠BCD)+(180°-∠CDE)+(180°-∠DEA)
=180°×5-(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)
=900°-(5-2)×180°
=900°-540°
=360°.
故答案為:360°.
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,與兩個角的角平分線相交于點.
(1)如圖1,若,求的度數.
(2)如圖2,若,,試寫出與之間的數量關系并證明你的結論.
(3)若,,,請直接用含有,的代數式表示出.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果A、B、C三點在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點,那么M,N兩點之間的距離為( )
A. 5 cm B. 1 cm C. 5或1 cm D. 無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在中,,是邊上的一個動點,將沿所在直線折疊,使點落在點處.
(1)如圖①,若點是的中點,連接.求證:四邊形是平行四邊形;
(2)如圖②,若,求的值.
圖① 圖②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】端午節(jié)期間,某品牌粽子經銷商銷售甲、乙兩種不同味道的粽子,已知一個甲種粽子和一個乙種粽子的進價之和為10元,每個甲種粽子的利潤是4元,每個乙種粽子的售價比其進價的2倍少1元,小王同學買4個甲種粽子和3個乙種粽子一共用了61元.
(1)甲、乙兩種粽子的進價分別是多少元?
(2)在(1)的前提下,經銷商統(tǒng)計發(fā)現:平均每天可售出甲種粽子200個和乙種粽子150個.如果將兩種粽子的售價各提高1元,則每天將少售出50個甲種粽子和40個乙種粽子.為使每天獲取的利潤更多,經銷商決定把兩種粽子的價格都提高x元.在不考慮其他因素的條件下,當x為多少元時,才能使該經銷商每天銷售甲、乙兩種粽子獲取的利潤為1190元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗. 我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整). 請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com