(2002•濟(jì)南)如圖1所示的是某立式家具(角書櫥)的橫斷面,請你設(shè)計一個方案(角書櫥高2m,房間高2.6m,所以不必從高度方面考慮方案的設(shè)計),按此方案,可使該家具能通過如圖2中的長廊搬入房間.把你設(shè)計的方案畫成草圖,并說明按此方案可把家具搬入房間的理由.(注:搬運過程中不準(zhǔn)拆家具,不準(zhǔn)損壞墻壁)

【答案】分析:只要DH的長在1.45米以內(nèi),即可順利通過,構(gòu)造直角三角形,利用相應(yīng)的三角函數(shù)求得DH長,看是否在1.45米以內(nèi)即可.
解答:解:方案如圖(1)所示.
理由:如圖(2),連接AB,延長DC交BA延長線于點E.
由題意知,AM=BM,
∴△ACE是等腰直角三角形.
∴CE=0.5,DE=DC+CE=2.
作DH⊥AB于點H,
則DH=DE•sin∠HED=2×sin45°=
<1.45,
∴可按方案設(shè)計圖將家具搬入房間.
點評:解本題的關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,只要把它抽象到解直角三角形中即可求出.
用到的知識點為:點到直線的所有連線中,垂線段最短.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2002•濟(jì)南)如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側(cè),PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時,點P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2002•濟(jì)南)如圖,已知AB,CD分別是半圓O的直徑和弦,AD和BC相交于點E,若∠AEC=α,則S△CDE:S△ABE等于( )

A.sinα
B.cosα
C.sin2α
D.cos2α

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•濟(jì)南)如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側(cè),PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當(dāng)⊙O'與y軸也相切時,點P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•濟(jì)南)如圖,有一個邊長為6cm的正三角形ABC木塊,點P是邊CA的延長線上的點,在A、P之間拉一條細(xì)繩,繩長AP為15cm.握住點P,拉直細(xì)繩,把它全部緊緊纏繞在△ABC木塊上(纏繞時木塊不動),若圓周率取3.14,點P運動的路線長為( )(精確到0.1cm)

A.28.3cm
B.28.2cm
C.56.5cm
D.56.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•濟(jì)南)如圖,有一塊邊長為2的正方形ABCD厚紙板,按照下面做法,做了一套七巧板:作圖①,作對角線AC,分別取AB,BC中點E,F(xiàn),連接EF作DG⊥EF于G,交AC于H,過G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K,將正方形ABCD沿畫出的線剪開,現(xiàn)由它拼出一座橋(如圖②),這座橋的陰影部分的面積是( )
A.8
B.6
C.5
D.4

查看答案和解析>>

同步練習(xí)冊答案