7.已知△ABC中,∠ABC=45°,AB=$\frac{5}{2}$$\sqrt{2}$,BC=12,將線段AC繞點A逆時針旋轉(zhuǎn)90°,線段AD,連接BD,求BD的長.

分析 如圖作AM⊥BC垂足為M,DN⊥MA交MA的延長線于N,BE⊥DN交DN的延長線于E,易證明△ADN≌△CAM,四邊形MNEB是矩形,在RT△EBD中求出BE,ED即可.

解答 解:如圖作AM⊥BC垂足為M,DN⊥MA交MA的延長線于N,BE⊥DN交DN的延長線于E.
∵∠E=∠ENM=∠NMB=90°,
∴四邊形MNEB是矩形,
BM=EN,EB=MN,
∵∠DAC=90°,
∴∠DAN+∠MAC=90°,
∵∠MAC+∠ACM=90°,
∴∠DAN=∠ACM,
在△ADN和△CAM中,
$\left\{\begin{array}{l}{∠DNA=∠AMC}\\{∠DAN=∠ACM}\\{AD=AC}\end{array}\right.$,
∴△ADN≌△CAM,
AM=DN,AN=CM.
在RT△ABM中,∵AB=$\frac{5\sqrt{2}}{2}$,∠ABM=45°,
∴BM=AM=$\frac{5}{2}$,MC=BC-BM=$\frac{19}{2}$,
在RT△BDE中,∵EB=MN=12,ED=5
∴BD=$\sqrt{B{E}^{2}+E{D}^{2}}$=$\sqrt{1{2}^{2}+{5}^{2}}$=13.

點評 本題考查全等三角形的判定和性質(zhì)、矩形的判定和性質(zhì)、勾股定理等知識,添加輔助線構(gòu)造全等三角形是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:填空題

7.如圖,在△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D,BE平分AC,則DE=$\frac{\sqrt{5}-2}{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.如圖,在△ABC與△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且∠BDA=90°,猜想線段BF、FC的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.如圖,點A、D、E在直線l上,∠BAC=90°,AB=AC,BD⊥l于D,CE⊥l于E,求證:DE=BD+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖,在△ABC中,∠B=60°,∠BAC、∠ACB的平分線AE、CF相交于點O.求證:
(1)OE=OF;
(2)AF+CE=AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)矩形地面,請觀察下列圖形,探究并解答下列問題.

(1)在第1個圖中,共有白色瓷磚2塊,
(2)在第10個圖中,共有白色瓷磚110塊,
(3)在第n個圖中,共有白色瓷磚n(n+1)塊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.觀察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$;…
回答下列問題:
(1)仿照上列等式,寫出第n個等式:$\sqrt{n+1}$-$\sqrt{n}$;
(2)利用你觀察到的規(guī)律,化簡:$\frac{1}{2\sqrt{3}+\sqrt{11}}$;
(3)計算:$\frac{1}{{1+\sqrt{2}}}+\frac{1}{{\sqrt{2}+\sqrt{3}}}+\frac{1}{{\sqrt{3}+2}}+…+\frac{1}{{\sqrt{2014}+\sqrt{2015}}}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

16.把14個棱長為1的正方體,在地面上堆疊成如圖所示的立體,然后將露出的表面部分染成紅色,那么紅色部分的面積為33.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

17.以$\left\{\begin{array}{l}x=2\\ y=3\end{array}\right.$為解的二元一次方程組是(  )
A.$\left\{\begin{array}{l}x+y=5\\ x-y=1\end{array}\right.$B.$\left\{\begin{array}{l}x+y=5\\ x-y=-1\end{array}\right.$C.$\left\{\begin{array}{l}x+y=-5\\ x-y=1\end{array}\right.$D.$\left\{\begin{array}{l}x+y=-5\\ x-y=-1\end{array}\right.$

查看答案和解析>>

同步練習冊答案