【題目】設a、b是任意兩個實數(shù),用max{a,b}表示a、b兩數(shù)中較大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,參照上面的材料,解答下列問題:
(1)max{5,2}= , max{0,3}=;
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范圍;
(3)求函數(shù)y=x2﹣2x﹣4與y=﹣x+2的圖象的交點坐標,函數(shù)y=x2﹣2x﹣4的圖象如圖所示,請你在圖中作出函數(shù)y=﹣x+2的圖象,并根據圖象直接寫出max{﹣x+2,x2﹣2x﹣4}的最小值.
【答案】
(1)5;3
(2)解:∵max{3x+1,﹣x+1}=﹣x+1,
∴3x+1≤﹣x+1,
解得:x≤0.
(3)解:聯(lián)立兩函數(shù)解析式成方程組,
,解得: , ,
∴交點坐標為(﹣2,4)和(3,﹣1).
畫出直線y=﹣x+2,如圖所示,
觀察函數(shù)圖象可知:當x=3時,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.
【解析】解:(1)max{5,2}=5,max{0,3}=3. 所以答案是:5;3.
【考點精析】本題主要考查了一次函數(shù)的性質和一次函數(shù)的圖象和性質的相關知識點,需要掌握一般地,一次函數(shù)y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小;一次函數(shù)是直線,圖像經過仨象限;正比例函數(shù)更簡單,經過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數(shù)量關系,并證明你的結論
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條公路的轉彎處是一段圓弧
(1)用直尺和圓規(guī)作出所在圓的圓心O;(要求保留作圖痕跡,不寫作法)
(2)若的中點C到弦AB的距離為20m,AB=80m,求所在圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“救死扶傷”是我國的傳統(tǒng)美德,某媒體就“老人摔倒該不該扶”進行了調查,將得到的數(shù)據經統(tǒng)計分析后繪制成如圖所示的扇形統(tǒng)計圖,根據統(tǒng)計圖判斷下列說法,其中錯誤的一項是( )
A.認為依情況而定的占27%
B.認為該扶的在統(tǒng)計圖中所對應的圓心角是234°
C.認為不該扶的占8%
D.認為該扶的占92%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,頂點為( ,﹣ )的拋物線y=ax2+bx+c過點M(2,0).
(1)求拋物線的解析式;
(2)點A是拋物線與x軸的交點(不與點M重合),點B是拋物線與y軸的交點,點C是直線y=x+1上一點(處于x軸下方),點D是反比例函數(shù)y= (k>0)圖象上一點,若以點A,B,C,D為頂點的四邊形是菱形,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點O是△ABC的內心,連接OB,OC,過點O作EF∥BC分別交AB,AC于點E,F(xiàn).已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)由AB,BD, 圍成的曲邊三角形的面積是;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個動點,且MN= EF,若把該正方形紙片卷成一個圓柱,使點A與點B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點間的距離是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點80米處有一所學校A.當重型運輸卡車P沿道路ON方向行駛時,在以P為圓心50米長為半徑的圓形區(qū)域內都會受到卡車噪聲的影響,且卡車P與學校A的距離越近噪聲影響越大.若已知重型運輸卡車P沿道路ON方向行駛的速度為18千米/時.
(1)求對學校A的噪聲影響最大時卡車P與學校A的距離;
(2)求卡車P沿道路ON方向行駛一次給學校A帶來噪聲影響的時間.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com