【題目】我國古代的優(yōu)秀數(shù)學著作《九章算術(shù)》有一道“竹九節(jié)”問題,大意是說:現(xiàn)有﹣一根上細下粗共九節(jié)的竹子,自上而下從第2節(jié)開始,每一節(jié)與前一節(jié)的容積之差都相等,且最上面三節(jié)的容積共9升,最下面三節(jié)的容積共45升,求第五節(jié)的容積,及每一節(jié)與前一節(jié)的容積之差.

請解答上述問題.

【答案】第五節(jié)的容積9升,每一節(jié)與前一節(jié)的容積之差2升.

【解析】

從題目中可知,第2節(jié)開始相鄰兩節(jié)的容積差相等設為y,第5節(jié)的容積直接設為x,然后根據(jù)第5節(jié)和容積差建立等量關(guān)系:第1節(jié)容積+2節(jié)容積+3節(jié)容積=9,第7節(jié)容積+8節(jié)容積+9節(jié)容積=45構(gòu)建二元一次方程組求解.

解:設第五節(jié)的容積為x升,每一節(jié)與前一節(jié)的空積之差為y升,依題意得:

,

解得:

答:第五節(jié)的容積9升,每一節(jié)與前一節(jié)的容積之差2升.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某市為了增強學生體質(zhì),全面實施“學生飲用奶”營養(yǎng)工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:

(1)本次被調(diào)查的學生有   名;

(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線交于點A.過點A軸的垂線,分別交兩條拋物線于點BC(B在點A左側(cè),點C在點A右側(cè)),則線段BC的長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了扎實推進精準扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為AB、C、D類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:

請根據(jù)圖中信息回答下面的問題:

1)本次抽樣調(diào)查了多少戶貧困戶?

2)抽查了多少戶C類貧困戶?并補全統(tǒng)計圖;

3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?

4)為更好地做好精準扶貧工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:將矩形紙片ABCD折疊,使點A與點C重合(點D與D'為對應點),折痕為EF,連接AF.

(1)如圖1,求證:四邊形AECF為菱形;

(2)如圖2,若FC=2DF,連接AC交EF于點O,連接DO、D'O,在不添加任何輔助線的情況下,請直接寫出圖2中所有等邊三角形.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,點、分別在邊、上.如果中點,且,那么的長度為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了建設社會主義新農(nóng)村,我市積極推進“行政村通暢工程”,對甲村和乙村之間的道路需要進行改造,施工隊在工作了一段時間后,因暴雨被迫停工幾天,不過施工隊隨后加快了施工進度,按時完成了兩村之間道路的改造.下面能反映該工程改造道路里程(公里)與時間(天)的函數(shù)關(guān)系大致的圖像是( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個不透明的布袋,甲袋中裝有1個紅球、3個黃球,乙袋中裝有2個紅球,1個綠球,小球除顏色外無其它區(qū)別;從甲袋中隨機摸出一個小球,從乙袋中隨機摸出一個小球,兩球都為紅球的概率是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】被歷代數(shù)學家尊為“算經(jīng)之首”的《九章算術(shù)》是中國古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?”

譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問雀、燕毎只各重多少斤?”

設每只雀重x斤,每只燕重y斤,可列方程組為_______.

查看答案和解析>>

同步練習冊答案