已知拋物線y=kx2-2kx+9-k(k為常數(shù),k≠0),且當x>0時,y>1.
(1)求拋物線的頂點坐標;
(2)求k的取值范圍;
(3)過動點P(0,n)作直線l⊥y軸,點O為坐標原點.
①當直線l與拋物線只有一個公共點時,求n關(guān)于k的函數(shù)關(guān)系式;
②當直線l與拋物線相交于A、B兩點時,是否存在實數(shù)n,使得不論k在其取值范圍內(nèi)取任意值時,△AOB的面積為定值?如果存在,求出n的值;如果不存在,說明理由.
【答案】分析:(1)由頂點坐標公式(,)可得答案;
(2)依題意可得,解之可得k的取值范圍;
(3)①當直線l與拋物線只有一個公共點時,有直線過頂點,可得n關(guān)于k的函數(shù)關(guān)系式,進而可作出判斷;
②當直線l與拋物線相交于A、B兩點時,正方程式可得其對于任意的k值,方程式恒成立,故拋物線的圖象過定點,因此△AOB的面積為定值.
解答:解:(1)∵,,(2分)
∴拋物線的頂點坐標為(1,-2k+9).(3分)

(2)依題意可得,(5分)
解得0<k<4.即k的取值范圍是0<k<4.(6分)

(3)①當直線l與拋物線只有一個公共點時,即直線l過拋物線的頂點,
由(1)得n關(guān)于k的函數(shù)關(guān)系式為n=-2k+9(0<k<4).(7分)
②結(jié)論:存在實數(shù)n,使得△AOB的面積為定值.(8分)
理由:n=kx2-2kx+9-k,整理,得(x2-2x-1)k+(9-n)=0.
∵對于任意的k值,上式恒成立,
,
解得,(9分)
∴當n=9時,對k在其取值范圍內(nèi)的任意值,拋物線的圖象都通過點和點
即△AOB的底,高為9,
因此△AOB的面積為定值.(10分)
點評:本題考查學(xué)生將二次函數(shù)的圖象與解析式相結(jié)合處理問題、解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=kx2(k>0)與直線y=ax+b(a≠0)有兩個公共點,它們的橫坐標分別為x1、x2,又有直線y=ax+b與x軸的交點坐標為(x3,0),則x1、x2、x3滿足的關(guān)系式是( �。�
A、x1+x2=x3
B、
1
x1
+
1
x2
=
1
x3
C、x3=
x1+x2
x1x2
D、x1x2+x2x3=x1x3
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(A在B的左邊),交y軸于C點,且y有最大值4.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使△PBC是直角三角形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=kx2-2kx+9-k(k為常數(shù),k≠0),且當x>0時,y>1.
(1)求拋物線的頂點坐標;
(2)求k的取值范圍;
(3)過動點P(0,n)作直線l⊥y軸,點O為坐標原點.
①當直線l與拋物線只有一個公共點時,求n關(guān)于k的函數(shù)關(guān)系式;
②當直線l與拋物線相交于A、B兩點時,是否存在實數(shù)n,使得不論k在其取值范圍內(nèi)取任意值時,△AOB的面積為定值?如果存在,求出n的值;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=kx2+(k-2)x-2(其中k>0).
(1)求該拋物線與x軸的交點及頂點的坐標(可以用含k的代數(shù)式表示);
(2)若記該拋物線頂點的坐標為P(m,n),直接寫出|n|的最小值;
(3)將該拋物線先向右平移
1
2
個單位長度,再向上平移
1
k
個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(37):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

已知拋物線y=kx2-2kx+9-k(k為常數(shù),k≠0),且當x>0時,y>1.
(1)求拋物線的頂點坐標;
(2)求k的取值范圍;
(3)過動點P(0,n)作直線l⊥y軸,點O為坐標原點.
①當直線l與拋物線只有一個公共點時,求n關(guān)于k的函數(shù)關(guān)系式;
②當直線l與拋物線相交于A、B兩點時,是否存在實數(shù)n,使得不論k在其取值范圍內(nèi)取任意值時,△AOB的面積為定值?如果存在,求出n的值;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹