一次函數(shù)的圖象如圖所示,則不等式:的解集為 (  )
A.B.C.D.
D.

試題分析:根據(jù)題意知:的圖象關于y軸對稱,由圖象知的解集為,故不等式:的解集為
故選D.
考點: 一次函數(shù)與一元一次不等式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若一次函數(shù)的圖像過點(0,2),且函數(shù)y隨自變量x的增大而增大,請寫出一個符合要求的一次函數(shù)表達式:_________

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,A1B1和A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線段).甲是一名游泳運動健將,乙是一名游泳愛好者,甲在賽道A1B1上從A1處出發(fā),到達B1后,以同樣的速度返回A1處,然后重復上述過程;乙在賽道A2B2上以2m/s的速度從B2處出發(fā),到達A2后以相同的速度回到B2處,然后重復上述過程(不考慮每次折返時的減速和轉(zhuǎn)向時間).若甲、乙兩人同時出發(fā),設離開池邊B1B2的距離為y(m),運動時間為t(s),甲游動時,y(m)與t(s)的函數(shù)圖象如圖2所示.
(1)賽道的長度是   m,甲的速度是   m/s;
(2)分別寫出甲在時,y關于t的函數(shù)關系式:
,y=    ;當時,y=   ;
(3)在圖2中畫出乙在2分鐘內(nèi)的函數(shù)大致圖象(用虛線畫);
(4)請你根據(jù)(3)中所畫的圖象直接判斷,若從甲、乙兩人同時開始出發(fā)到2分鐘為止,甲、乙共相遇了幾次?2分鐘時,乙距池邊B1B2的距離為多少米。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:關于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1).
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設方程的兩個實數(shù)根分別為x1,x2(其中x1>x2),若y是關于m的函數(shù),且y=x1﹣3x2,求這個函數(shù)的解析式;
(3)將(2)中所得的函數(shù)的圖象在直線m=2的左側(cè)部分沿直線m=2翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象回答:當關于m的函數(shù)y=2m+b的圖象與此圖象有兩個公共點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

2013年4月20日08時02分在四川雅安蘆山縣發(fā)生7.0級地震,人民生命財產(chǎn)遭受重大損失.某部隊接到上級命令,乘車前往災區(qū)救援,前進一段路程后,由于道路受阻,車輛無法通行,通過短暫休整后決定步行前往.則能反映部隊與災區(qū)的距離(千米)與時間(小時)之間函數(shù)關系的大致圖象是(   )。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)的圖象在第一象限內(nèi)交于點C,CD⊥x軸于點D,OD=2AO,求反比例函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如表所示:
類型  價格
進價(元/盞)
售價(元/盞)
A型
30
45
B型
50
70
 
(1)若商場預計進貨款為3500元,則這兩種臺燈各購進多少盞?
(2)若商場規(guī)定B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系內(nèi),直線y=x+3與兩坐標軸交于A、B兩點,點O為坐標原點,若在該坐標平面內(nèi)有以點P(不與點A、B、O重合)為頂點的直角三角形與Rt△ABO全等,且這個以點P為頂點的直角三角形與Rt△ABO有一條公共邊,則所有符合條件的P點個數(shù)為( 。

A.9個    B.7個     C.5個      D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某運輸公司的一艘輪船在長江上航行,往返于A、B兩地.假設輪船在靜水中的速度不變,長江的水流速度不變,該輪船從A地出發(fā),逆水航行到B,停留一段時間(卸貨、裝貨、加燃料等),又順水航行返回A.若該輪船從A出發(fā)后所用的時間為x(小時),輪船距A的距離為y(千米),則下列各圖形中,能夠反映y與x之間函數(shù)關系的大致圖象是

查看答案和解析>>

同步練習冊答案