【題目】如圖,已知∠AOBBOC=35,OD、OE分別是∠AOB和∠BOC的平分線,若∠DOE=60°,求∠AOB和∠BOC的度數(shù).

【答案】AOB=45°,BOC =75°

【解析】設∠AOB=3x°,∠BOC=5x°,由角平分線則可得∠DOE=4x°,根據∠DOE=60°,即可得出x的值,即可求得∠AOB和∠BOC的度數(shù)

試題解析:AOBBOC=35∴設∠AOB=3x°,∠BOC=5x°,

OD、OE分別是∠AOB和∠BOC的平分線,

∴∠BOD=∠AOB=1.5x°,∠BOE=∠BOC=2.5x°,

∴∠DOE=∠BOD+∠BOE=4x°,

∵∠DOE=60°,

∴4x=60,

∴x=15,

∴∠AOB=45°,∠BOC=75°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將關于x的一元二次方程xx+2)=5化成一般式后,a、b、c的值分別是( 。

A.1,2,5B.1,﹣2,﹣5C.1,﹣25D.1,2,﹣5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關于x的方程有實數(shù)根的是(
A.x2﹣x+1=0
B.x2+x+1=0
C.(x﹣1)(x+2)=0
D.(x﹣1)2+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】病人按規(guī)定的劑量服用某種藥物,測得服藥后2小時,每毫升血液中的含藥量達到最大值為4毫克,已知服藥后,2小時前每毫升血液中的含藥量y(毫克)與時間x(小時)成正比例,2小時后y與x成反比例(如圖所示).根據以上信息解答下列問題.
(1)求當0≤x≤2時,y與x的函數(shù)關系式;
(2)求當x>2時,y與x的函數(shù)關系式;
(3)若每毫升血液中的含藥量不低于2毫克時治療有效,則服藥一次,治療疾病的有效時間是多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是矩形ABCD的邊AD的一個動點,矩形的兩條邊AB、BC的長分別為3和4,那么點P到矩形的兩條對角線AC和BD的距離之和是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,D,E分別為AC,AB的中點,BF∥CE交DE的延長線于點F.
(1)求證:四邊形ECBF是平行四邊形;
(2)當∠A=30°時,求證:四邊形ECBF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據圖中提供的信息,回答下列問題

(1)一個暖瓶與一個水杯分別是多少元?

(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定: 這兩種商品都打九折乙商場規(guī)定:買一個暖瓶贈送一個水杯。若某單位想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學生,經測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點O是等邊ABC內的任一點,連接OA,OB,OC.

(1)如圖1,已知AOB=150°,BOC=120°,將BOC繞點C按順時針方向旋轉60°得ADC.

DAO的度數(shù)是 ;

②用等式表示線段OA,OB,OC之間的數(shù)量關系,并證明;

(2)設AOB=α,BOC=β.

①當α,β滿足什么關系時,OA+OB+OC有最小值?請在圖2中畫出符合條件的圖形,并說明理由;

②若等邊ABC的邊長為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

同步練習冊答案