【題目】某超市銷(xiāo)售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià)現(xiàn)在的售價(jià)為每箱36元,每月可銷(xiāo)售60箱市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷(xiāo)量將增加10箱,設(shè)每箱牛奶降價(jià)x元(x為正整數(shù)),每月的銷(xiāo)量為y箱.
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式和自變量x的取值范圍;
(2)市如何定價(jià),才能使每月銷(xiāo)售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?
【答案】
(1)解:根據(jù)題意,得:y=60+10x,由36﹣x≥24得x≤12,
∴1≤x≤12,且x為整數(shù)
(2)解:設(shè)所獲利潤(rùn)為W,
則W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,
∴當(dāng)x=3時(shí),W取得最大值,最大值為810,
答:超市定價(jià)為33元時(shí),才能使每月銷(xiāo)售牛奶的利潤(rùn)最大,最大利潤(rùn)是810元.
【解析】(1)根據(jù)售價(jià)每降價(jià)1元,則每月的銷(xiāo)量將增加10箱,可得出多賣(mài)10x件,因此可以列出函數(shù)關(guān)系式,求出其取值范圍。注意x為整數(shù)。
(2)根據(jù)利潤(rùn)=(售價(jià)-進(jìn)價(jià))銷(xiāo)售量y。列出函數(shù)解析式,化成頂點(diǎn)式,求出最大值即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖表示玲玲騎自行車(chē)離家的距離與時(shí)間的關(guān)系.她9點(diǎn)離開(kāi)家,15點(diǎn)回到家,請(qǐng)根據(jù)圖象回答下列問(wèn)題:
(1)玲玲到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?她離家多遠(yuǎn)?
(2)她何時(shí)開(kāi)始第一次休息?休息了多長(zhǎng)時(shí)間?
(3)第一次休息時(shí),她離家多遠(yuǎn)?
(4)11點(diǎn)~12點(diǎn)她騎車(chē)前進(jìn)了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家發(fā)改委、工業(yè)和信息化部、財(cái)政部公布了“節(jié)能產(chǎn)品惠民工程”,公交公司積極響應(yīng)將舊車(chē)換成節(jié)能環(huán)保公交車(chē),計(jì)劃購(gòu)買(mǎi)A型和B型兩種環(huán)保型公交車(chē)10輛,其中每臺(tái)的價(jià)格、年載客量如表:
A型 | B型 | |
價(jià)格(萬(wàn)元/臺(tái)) | x | y |
年載客量/萬(wàn)人次 | 60 | 100 |
若購(gòu)買(mǎi)A型環(huán)保公交車(chē)1輛,B型環(huán)保公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型環(huán)保公交車(chē)2輛,B型環(huán)保公交車(chē)1輛,共需350萬(wàn)元.
(1)求x、y的值;
(2)如果該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保10輛公交車(chē)在該線路的年載客量總和不少于680萬(wàn)人次,問(wèn)有哪幾種購(gòu)買(mǎi)方案?
(3)在(2)的條件下,哪種方案使得購(gòu)車(chē)總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG、DE.
n
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角(0°< <360°)得到正方形OE’F’G’,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG’是直角時(shí),求 的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF’長(zhǎng)的最大值和此時(shí) 的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),且在直線BC的上方.
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形面積的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某場(chǎng)足球比賽中,球員甲從球門(mén)底部中心點(diǎn)O的正前方10m處起腳射門(mén),足球沿拋物線飛向球門(mén)中心線;當(dāng)足球飛離地面高度為3m時(shí)達(dá)到最高點(diǎn),此時(shí)足球飛行的水平距離為6m.已知球門(mén)的橫梁高為2.44m.
(1)在如圖所示的平面直角坐標(biāo)系中,問(wèn)此飛行足球能否進(jìn)球門(mén)?(不計(jì)其它情況)
(2)守門(mén)員乙站在距離球門(mén)2m處,他跳起時(shí)手的最大摸高為2.52m,他能阻止球員甲的此次射門(mén)嗎?如果不能,他至少后退多遠(yuǎn)才能阻止球員甲的射門(mén)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從①,②,③三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論可以組成3個(gè)命題.
(1)這三個(gè)命題中,真命題的個(gè)數(shù)為________;
(2)選擇一個(gè)真命題,并且證明.(要求寫(xiě)出每一步的依據(jù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com