如圖所示,在平面直角坐標(biāo)系中,以點(diǎn)M(2,3)為圓心,5為半徑的圓交x軸于A,B兩點(diǎn),過(guò)點(diǎn)M作x軸的垂線(xiàn),垂足為D;過(guò)點(diǎn)B作⊙M的切線(xiàn),與直線(xiàn)MD交于N點(diǎn).
(1)求點(diǎn)B、點(diǎn)N的坐標(biāo)以及直線(xiàn)BN的解析式;
(2)求過(guò)A、N、B、三點(diǎn)(對(duì)稱(chēng)軸與y軸平行)的拋物線(xiàn)的解析式;
(3)設(shè)(2)中的拋物線(xiàn)與y軸交于點(diǎn)P,以點(diǎn)D,B,P三點(diǎn)為頂點(diǎn)作平行四邊形,請(qǐng)你求出第四個(gè)頂點(diǎn)Q的坐標(biāo),并判斷Q是否在(2)中的拋物線(xiàn)上.

【答案】分析:(1)本題需先根據(jù)圓的方程求出點(diǎn)B的坐標(biāo),然后求出直線(xiàn)BN的解析式,即可求出點(diǎn)N的坐標(biāo).
(2)根據(jù)拋物線(xiàn)的對(duì)稱(chēng)軸和點(diǎn)A的坐標(biāo)即可求出拋物線(xiàn)的解析式.
(3)根據(jù)拋物線(xiàn)的解析式求出點(diǎn)P的坐標(biāo),再根據(jù)平行線(xiàn)的性質(zhì)求出點(diǎn)Q的坐標(biāo),并由此判斷出Q是否在拋物線(xiàn)上.
解答:解:(1)連接BM
則BM=5,DM=3
BD===4
∴BO=BD-OD=4-2=2
∴點(diǎn)B坐標(biāo)為(-2,0),
∵直線(xiàn)BN和BM垂直,
∴△MBD∽△MNB,

,
,
,
∴點(diǎn)N的坐標(biāo)是(2,-),
設(shè)直線(xiàn)BN的解析式是y=kx+b(k≠0),
把B(-2,0)N(2,-)代入函數(shù)的解析式得:

解得k=-,b=-,
∴直線(xiàn)BN的解析式是;y=-x-

(2)點(diǎn)A,B關(guān)于直線(xiàn)x=2對(duì)稱(chēng),
所以x=2就是拋物線(xiàn)的對(duì)稱(chēng)軸那么設(shè)拋物線(xiàn)的方程為y=a(x-2)2-
將A(6,0)代入 0=16a-,
a=,
那么y=(x-2)2-=x2-x-4;

(3)令x=0,y=-4,
所以點(diǎn)P的坐標(biāo)(0,-4)若構(gòu)成平行四邊形,那么Q的縱坐標(biāo)為-4,
設(shè)橫坐標(biāo)為a,
∵AD=4,
∴a=4 點(diǎn)Q坐標(biāo)(4,-4)將x=4代入y=--4=-4,
Q1(-4,-4);Q2(4,-4);Q3(0,4),
Q2在拋物線(xiàn)上是Q的橫坐標(biāo),所以點(diǎn)Q在拋物線(xiàn)上.
點(diǎn)評(píng):本題主要考查了拋物線(xiàn)的性質(zhì)和解析式求法,要會(huì)根據(jù)已知條件求點(diǎn)的坐標(biāo)并判斷出是否在拋物線(xiàn)上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點(diǎn)A,過(guò)點(diǎn)A分別作x軸、y軸的垂線(xiàn),垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到月牙②,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開(kāi)始依次關(guān)于點(diǎn)A,B,C作循環(huán)對(duì)稱(chēng)跳動(dòng),即第一次從點(diǎn)P跳到關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)M處,第二次從點(diǎn)M跳到關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)N處,第三次從點(diǎn)N跳到關(guān)于點(diǎn)C的對(duì)稱(chēng)點(diǎn)處,…如此下去.
(1)在圖中標(biāo)出點(diǎn)M,N的位置,并分別寫(xiě)出點(diǎn)M,N的坐標(biāo):
 

(2)請(qǐng)你依次連接M、N和第三次跳后的點(diǎn),組成一個(gè)封閉的圖形,并計(jì)算這個(gè)圖形的面積;
(3)猜想一下,經(jīng)過(guò)第2009次跳動(dòng)之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對(duì)角線(xiàn)長(zhǎng)分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對(duì)角線(xiàn)OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點(diǎn)重合),依上述排列方式,對(duì)角線(xiàn)長(zhǎng)為n的第n個(gè)正方形的頂點(diǎn)An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),拋物線(xiàn)與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線(xiàn)段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過(guò)點(diǎn)P作y軸的垂線(xiàn),垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線(xiàn)的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時(shí),過(guò)點(diǎn)P作x的垂線(xiàn),垂足為F,連接EF,把△PEF沿直線(xiàn)EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',請(qǐng)直接寫(xiě)出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線(xiàn)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案