A. | 5$\sqrt{2}$ | B. | 6 | C. | 7 | D. | 6$\sqrt{2}$ |
分析 延長(zhǎng)BC到E,使CE=AB,連接DE,易證∠BAD=∠DCE,即可證明△DAB≌△DCE,可得∠ADB=∠CDE,BD=DE=6$\sqrt{2}$,CE=AB=5,即可求證△BDE為等腰直角三角形,即可求得BE的長(zhǎng),進(jìn)而即可求得BC=BE-CE=12-5=7.
解答 解:延長(zhǎng)BC到E,使CE=AB,連接DE,
∵∠ABC=∠ADC=90°,
∴∠BAD+∠BCD=180°,
∵∠DCE+∠BCD=180°,
∴∠BAD=∠DCE,
∵在△DAB和△DCE中,
$\left\{\begin{array}{l}{AB=CE}\\{∠BAD=∠DCE}\\{AD=DC}\end{array}\right.$,
∴△DAB≌△DCE,(SAS)
∴∠ADB=∠CDE,BD=DE=6$\sqrt{2}$,CE=AB=5,
∵∠ADB+∠BDC=∠ADC=90°,
∴∠BDE=∠CDE+∠BDC=90°,
∴△BDE為等腰直角三角形,
∴BE=$\sqrt{2}$BD=12,
∴BC=BE-CE=12-5=7.
故選C.
點(diǎn)評(píng) 本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊、對(duì)應(yīng)角相等的性質(zhì),本題中求證△DAB≌△DCE是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -29a10 | B. | 29a10 | C. | 210a10 | D. | -210a10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com