分析 (1)將A,B點(diǎn)坐標(biāo)代入函數(shù)y=$\frac{4}{3}$x2+bx+c中,求得b、c,進(jìn)而可求解析式及C坐標(biāo);
(2)根據(jù)P,Q運(yùn)動速度相同,則△APQ運(yùn)動時(shí)都為等腰三角形,根據(jù)對稱的性質(zhì)得到AP=DP,AQ=DQ,求得四邊形四邊都相等,即可得到結(jié)論;
(3)等腰三角形有三種情況,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分線,畫圓易得E大致位置,設(shè)邊長為x,表示其他邊后利用勾股定理易得E坐標(biāo).
解答 解:(1)∵二次函數(shù)y=$\frac{4}{3}$x2+bx+c的圖象與x軸交于A(3,0),B(-1,0),
∴$\left\{\begin{array}{l}{0=\frac{4}{3}×9+3b+c}\\{0=\frac{4}{3}×1-b+c}\end{array}\right.$,
解得 $\left\{\begin{array}{l}{b=-\frac{8}{3}}\\{c=-4}\end{array}\right.$,
∴y=$\frac{4}{3}$x2-$\frac{8}{3}$x-4.
∴C(0,-4);
(2)四邊形APDQ為菱形,理由如下:
如圖1,D點(diǎn)關(guān)于PQ與A點(diǎn)對稱,過點(diǎn)Q作FQ⊥AP于F,
∵AP=AQ=t,AP=DP,AQ=DQ,
∴AP=AQ=QD=DP,
∴四邊形AQDP為菱形;
(3)存在.
如圖2,過點(diǎn)Q作QD⊥OA于D,此時(shí)QD∥OC,
∵A(3,0),B(-1,0),C(0,-4),O(0,0),
∴AB=4,OA=3,OC=4,
∴AC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動,AB=4,
∴AQ=4.
∵QD∥OC,
∴$\frac{QD}{OD}$=$\frac{AD}{AO}=\frac{AQ}{AC}$,
∴$\frac{QD}{4}=\frac{AD}{3}=\frac{4}{5}$,
∴QD=$\frac{16}{5}$,AD=$\frac{12}{5}$.
①作AQ的垂直平分線,交AO于E,此時(shí)AE=EQ,即△AEQ為等腰三角形,
設(shè)AE=x,則EQ=x,DE=AD-AE=|$\frac{12}{5}$-x|,
∴在Rt△EDQ中,($\frac{12}{5}$-x)2+($\frac{16}{5}$)2=x2,解得 x=$\frac{10}{3}$,
∴OA-AE=3-$\frac{10}{3}$=-$\frac{1}{3}$,
∴E(-$\frac{1}{3}$,0),
說明點(diǎn)E在x軸的負(fù)半軸上;
②以Q為圓心,AQ長半徑畫圓,交x軸于E,此時(shí)QE=QA=4,
∵ED=AD=$\frac{12}{5}$,
∴AE=$\frac{24}{5}$,
∴OA-AE=3-$\frac{24}{5}$=-$\frac{9}{5}$,
∴E(-$\frac{9}{5}$,0).
③當(dāng)AE=AQ=4時(shí),
1.當(dāng)E在A點(diǎn)左邊時(shí),
∵OA-AE=3-4=-1,
∴E(-1,0).
2.當(dāng)E在A點(diǎn)右邊時(shí),
∵OA+AE=3+4=7,
∴E(7,0).
綜上所述,存在滿足條件的點(diǎn)E,點(diǎn)E的坐標(biāo)為(-$\frac{1}{3}$,0)或(-$\frac{9}{5}$,0)或(-1,0)或(7,0).
點(diǎn)評 本題考查了拋物線解析式的求解,考查了拋物線和直線交點(diǎn)的求解,考查了菱形的判定和菱形各邊長相等的性質(zhì),考查了等腰直角三角形的性質(zhì),考查了平分線分線段成比例的性質(zhì),本題中用t表示點(diǎn)D的坐標(biāo)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.08×10-5 | B. | 1.8×10-6 | C. | 1.08×10-4 | D. | 1.8×10-5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com