【題目】已知,點分別在射線上運動(不與點重合)
觀察:
(1)如圖1,若和的平分線交于點,_____°
猜想:
(2)如圖2,隨著點分別在射線上運動(不與點重合). 若是的平分線,的反向延長線與的平分線交于點, 的大小會變嗎?如果不會,求的度數(shù);如果會改變,說明理由.
拓展:
(3)如圖3,在(2)基礎(chǔ)上,小明將沿折疊,使點落在四邊形內(nèi)點′的位置,求的度數(shù).
【答案】(1)135°;(2);(3).
【解析】
(1) 由三角形內(nèi)角和定理得出∠OBA+∠OAB=90°,由角平分線的性質(zhì)定理得出∠ABC+∠BAC=×90°=45°,再由三角形內(nèi)角和定理即可得出結(jié)果;
(2)根據(jù)∠BAO和∠ABN的平分線以及△ABO的外角的性質(zhì)求解即可得到∠E的值不變;
(3)根據(jù)折疊可得,,,依據(jù)平角的意義得,,結(jié)合(2)的結(jié)論通過計算即可得到結(jié)果.
(1) ∵∠MON=90°,
∴∠OBA+∠OAB=90°,
∵∠OBA、∠OAB的平分線交于點C,
∴∠ABC+∠BAC=×90°=45°,
∴∠ACB=180°-45°=135°;
(2)∵是的平分線
∴
∵是的平分線
∴
∵
∴
∵
∴
即
拓展:
(3)由折疊可得,,
∴,
∴,
∴
∵,
∴
.
科目:初中數(shù)學 來源: 題型:
【題目】為便于管理與場地安排,松北某中學校以小明所在班級為例,對學生參加各個體育項目進行了調(diào)查統(tǒng)計.并把調(diào)查的結(jié)果繪制了如圖所示的不完全統(tǒng)計圖,請你根據(jù)下列信息回答問題:
(1)在這次調(diào)查中,小明所在的班級參加籃球項目的同學有多少人?并補全條形統(tǒng)計圖.
(2)如果學校有800名學生,請估計全校學生中有多少人參加籃球項目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求拋物線的解析式;
(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.
①當△OPC為等腰三角形時,求點P的坐標;
②求△BOD 面積的最大值,并寫出此時點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AE=3,ED=,求BC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2﹣x+c與x軸相交于A、B兩點(B點在A點的左側(cè)),與y軸相交于C點,且AB=10.
(1)求這條拋物線的解析式;
(2)如圖2,D點在x軸上,且在A點的右側(cè),E點為拋物線上第二象限內(nèi)的點,連接ED交拋物線于第二象限內(nèi)的另外一點F,點E到y軸的距離與點F到y軸的距離之比為3:1,已知tan∠BDE=,求點E的坐標;
(3)如圖3,在(2)的條件下,點G由B出發(fā),沿x軸負方向運動,連接EG,點H在線段EG上,連接DH,∠EDH=∠EGB,過點E作EK⊥DH,與拋物線相應點E,若EK=EG,求點K的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CF⊥AB于F,BE⊥AC于E,M為BC的中點,BC=10.
(1)若∠ABC=50°,∠ACB=60°,求∠EMF的度數(shù);
(2)若EF=4,求△MEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了慶祝校園藝術(shù)節(jié),準備購買一批盆花布置校園.已知1盆A種花和2盆B種花一共需13元,2盆A種花和1盆B種花一共需11元.
(1)求1盆A種花和1盒B種花的售價各是多少元?
(2)學校準備購進這兩種盆花共100盆,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2倍,請求出A種盆花的數(shù)量最多是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com