【題目】如圖,在邊長為4的正方形ABCD中,點G是BC邊上的任意一點(不同于端點B、C),連接AG,過B、D兩點作BE⊥AG,DF⊥AG,垂足分為E、F.

(1)求證:△ABE≌△DAF;

(2)若ADF的面積為1,試求|BE﹣DF|的值.

【答案】(1)證明見解析(2)2

【解析】試題分析

1)由已知條件易得:∠DFA=∠AEB=∠DAB=90°,從而可得∠ADF+∠DAF=∠DAF+∠BAE=90°,由此即可得到∠ADF=∠BAE,結(jié)合正方形ABCDAD=AB即可證得△ABE≌△DAF;

2)設(shè)AF=aDF=b,則由△ADF的面積為1可得,即可得到;由正方形的邊長為4RtADF中可得: ,由此即可得到,即可解得的值,從而可由|BEDF|=|AFDF|求出所求的值.

試題解析

1在正方形ABCD中,∠DAB=90°,AB=AD

∴∠DAF+∠BAE=90°,

∵DF⊥AGBE⊥AG,

∴∠AFD=∠BEA=90°,∠DAF+∠ADF=90°,

∴∠BAE=∠ADF,

ABEDAF中,

∴△ABE≌△DAFAAS);

2∵△ABE≌△DAF,

∴BE=AF,

設(shè)AF=aDF=b,

∵△ADF的面積為1,

AFDF=1,ab=1,

∴ ab=2,

Rt△ADF中,根據(jù)勾股定理得,AF2+DF2=AD2,a2+b2=42=16

a﹣b2=a2﹣2ab+b2=16﹣4=12,

|ab|=,|AFDF|=|BEDF|=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩地相距80km,甲、乙兩人沿同一條公路從A地到B地,乙騎自行車,甲騎摩托車,DE、OC分別表示甲、乙兩人離開A地的距離(km)與乙出發(fā)的時間(h)的關(guān)系,根據(jù)圖象填空:

(1)乙先出發(fā)__h后,甲才出發(fā);

(2)大約在乙出發(fā)后__h,兩人相遇,這時他們離A地__km;

(3)甲到達B地時,乙離開A地__km;

(4)甲的速度是__km/h;乙的速度是__km/h;

(5)甲離開A地的距離s(km)與乙出發(fā)的時間t(h的關(guān)系式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F處,若△FDE的周長為8,FCB的周長為22,則ABCD的周長為________,FC的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填在相應(yīng)的括號內(nèi).

,0,0.16,3, ,-,,-,-3.14

有理數(shù):{____________________________________________________};

無理數(shù):{____________________________________________________};

負(fù)實數(shù):{____________________________________________________}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點

1在圖1中以格點為頂點畫一個面積為5的等腰直角三角形;

2在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、 ;

3如圖3,點A、B、C是小正方形的頂點,ABC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A( ,0),B(0,2),則點B2016的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于 BF長為半徑畫弧,兩弧交于一點P,連
接AP并延長交BC于點E,連接EF.

(1)四邊形ABEF是;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為 , ∠ABC=°.(直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D把一個400米的環(huán)形跑道分成相等的4段,即兩條直道和兩條彎道的長度相同.甲平均每秒跑4,乙平均每秒跑6,若甲、乙兩人分別從A、C兩處同時相向出發(fā)(如圖),當(dāng)他們第4次相遇時,其相遇點在____________(”AB””BC””CD””DA”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.

(1)分別寫出下列各點的坐標(biāo):A′ B′ ;C′

(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到?

(3)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應(yīng)點P′的坐標(biāo)為 ;

(4)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案