分析 由線段AB繞點O順時針旋轉90°得到線段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y軸于C,A′C′⊥x軸于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐標就可以求出結論.
解答 解:∵線段AB繞點O順時針旋轉90°得到線段A′B′,
∴△ABO≌△A′B′O′,∠AOA′=90°,
∴AO=A′O.
作AC⊥y軸于C,A′C′⊥x軸于C′,
∴∠ACO=∠A′C′O=90°.
∵∠COC′=90°,
∴∠AOA′-∠COA′=∠COC′-∠COA′,
∴∠AOC=∠A′OC′.
在△ACO和△A′C′O中,
$\left\{\begin{array}{l}{∠ACO=∠A′C′O}\\{∠AOC=∠A′OC′}\\{AO=A′O}\end{array}\right.$,
∴△ACO≌△A′C′O(AAS),
∴AC=A′C′,CO=C′O.
∵A(-2,6),
∴AC=2,CO=6,
∴A′C′=2,OC′=6,
∴A′(6,2).
故答案為:A′(6,2).
點評 本題考查了旋轉的性質的運用,全等三角形的判定及性質的運用,等式的性質的運用,點的坐標的運用,解答時證明三角形全等是關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 有一個角等于60°的兩個等腰三角形相似 | |
B. | 有一個底角等于30°的兩個等腰三角形相似 | |
C. | 有一個銳角相等的兩個等腰三角形相似 | |
D. | 有一個銳角相等的兩個直角三角形相似 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com