【題目】如圖,在△ABC中,AB=AC,D是AB上一點(diǎn),以點(diǎn)D為圓心,AC為半徑畫(huà)弧交BA的延長(zhǎng)線(xiàn)于點(diǎn)E,連接CD,作EF∥CD,交∠EAC的平分線(xiàn)于點(diǎn)F,連接CF.
(1)求證:△BCD≌△AFE;
(2)若AC=6,∠BAC=30°,求四邊形CDEF的面積.
【答案】(1)見(jiàn)解析;(2)四邊形CDEF的面積為18.
【解析】
(1)利用三角形外角性質(zhì)以及平行線(xiàn)的性質(zhì),可得∠B=∠1,∠BDC=∠AEF,根據(jù)ASA即可判定△BCD≌△AFE;
(2)過(guò)A作AH⊥CF,垂足為H,先判定四邊形CDEF是平行四邊形,即可得出CF=AB=AC=6,且CF∥AB,再根據(jù)AH=AC=3,即可得到S四邊形CDEF=CF×AH=18.
解:(1)∵AB=AC,
∴∠B=∠ACB,
∵∠EAC=∠B+∠ACB,
∴∠EAC=2∠B,
∵∠1=∠2,
∴∠EAC=2∠1,
∴∠B=∠1,
∵EF∥CD,
∴∠BDC=∠AEF,
∵AB=AC=DE,
∴BD=AE,
∴△BCD≌△AFE(ASA);
(2)如圖,過(guò)A作AH⊥CF,垂足為H,
∵△BCD≌△AFE,
∴CD=EF,
又∵EF∥CD,
∴四邊形CDEF是平行四邊形,
∴CF=AB=AC=6,且CF∥AB,
∵∠BAC=30°,
∴∠ACH=30°,
∴AH=AC=3,
∴S四邊形CDEF=CF×AH=6×3=18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每到春夏交替時(shí)節(jié),雌性楊樹(shù)會(huì)以滿(mǎn)天飛絮的方式來(lái)傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問(wèn)卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)本次接受調(diào)查的市民共有 人;
(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是 °;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有90萬(wàn)人,請(qǐng)估計(jì)贊同“選育無(wú)絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初級(jí)中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生年齡情況,隨機(jī)調(diào)查了本校部分學(xué)生的年齡,根據(jù)所調(diào)查的學(xué)生的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次接受調(diào)查的學(xué)生人數(shù)為_______,圖①中 的值為 ;
(2)求統(tǒng)計(jì)的這組學(xué)生年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)E為CB邊的延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)F是線(xiàn)段AE的中點(diǎn),過(guò)點(diǎn)F作AE的垂線(xiàn)交BD于點(diǎn)M,連接ME、MC.
(1)根據(jù)題意補(bǔ)全圖形,猜想與的數(shù)量關(guān)系并證明;
(2)連接FB,判斷FB 、FM之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:坐標(biāo)平面內(nèi),對(duì)于拋物線(xiàn)y=ax2+bx(a≠0),我們把點(diǎn)(﹣,)稱(chēng)為該拋物線(xiàn)的焦點(diǎn),把y=﹣稱(chēng)為該拋物線(xiàn)的準(zhǔn)線(xiàn)方程.例如,拋物線(xiàn)y=x2+2x的焦點(diǎn)為(﹣1,﹣),準(zhǔn)線(xiàn)方程是y=﹣.根據(jù)材料,現(xiàn)已知拋物線(xiàn)y=ax2+bx(a≠0)焦點(diǎn)的縱坐標(biāo)為3,準(zhǔn)線(xiàn)方程為y=5,則關(guān)于二次函數(shù)y=ax2+bx的最值情況,下列說(shuō)法中正確的是( )
A.最大值為4B.最小值為4
C.最大值為3.5D.最小值為3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠B=90°,點(diǎn)P從A點(diǎn)開(kāi)始沿AB邊向B點(diǎn)以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向C點(diǎn)以2cm/s的速度移動(dòng),若點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),問(wèn)過(guò)多少秒后,△PBQ的面積分別為8cm2和10cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,C為的中點(diǎn),延長(zhǎng)AD,BC交于P,連結(jié)AC.
(1)求證:AB=AP;
(2)當(dāng)AB=10,DP=2時(shí),求線(xiàn)段CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD的對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,將矩形沿對(duì)角線(xiàn)AC折疊,折疊后點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,連接DE.
(1)求證:;
(2)當(dāng)AB與BC滿(mǎn)足什么數(shù)量關(guān)系時(shí),四邊形AODE是菱形?請(qǐng)說(shuō)明理由;
(3)將圖1中的矩形ABCD改為平行四邊形ABCD,其它條件不變,如圖2,若AB=,∠ABC=30°,點(diǎn)E在直線(xiàn)AD上方,試探究:△AED是直角三角形時(shí),BC的長(zhǎng)度是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,,點(diǎn),分別是邊,的中點(diǎn),連接.將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為.
(1)問(wèn)題發(fā)現(xiàn)
①當(dāng)時(shí), ;②當(dāng)時(shí), .
(2)拓展探究
試判斷:當(dāng)時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)旋轉(zhuǎn)至A、B、E三點(diǎn)共線(xiàn)時(shí),直接寫(xiě)出線(xiàn)段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com