【題目】(閱讀材料)
對于二次三項式可以直接分解為的形式,但對于二次三項式,就不能直接用公式了,我們可以在二次三項式中先加上一項,使其成為完全平方式,再減去這項,(這里也可把拆成與的和),使整個式子的值不變.
于是有:
,
我們把像這樣將二次三項式分解因式的方法叫做添(拆)項法.
(應(yīng)用材料)
上式中添(拆)項后先把完全平方式組合在一起,然后用______法實現(xiàn)分解因式.
請你根據(jù)材料中提供的因式分解的方法,將下面的多項式分解因式:
;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AB=BE=2,sin∠ACD= ,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 明德中學(xué)在商場購買甲、乙兩種不同足球,購買甲種足球共花費3000元,購買乙種足球共花費2100元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元.
(1)求購買一個甲種足球、一個乙種足球各需多少元;
(2)為響應(yīng)國家“足球進校園”的號召,這所學(xué)校決定再次購買甲、乙兩種足球共50個,恰逢該商場對兩種足球的售價進行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2950元,那么這所學(xué)校最多可購買多少個乙種足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江蘇省常州市)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個學(xué)生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖:
根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次抽樣調(diào)查中的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)該校共有2000名學(xué)生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結(jié)論:①abc<0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的實數(shù))⑥2a+b+c>0,其中正確的結(jié)論的有( 。
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形紙片中,,,把這張長方形紙片如圖放置在平面直角坐標(biāo)系中,在邊上取一點,將沿折疊,使點恰好落在邊上的點處.
(1)點的坐標(biāo)是____________________;點的坐標(biāo)是__________________________;
(2)在上找一點,使最小,求點的坐標(biāo);
(3)在(2)的條件下,點是直線上一個動點,設(shè)的面積為,求與的函數(shù) 關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電信公司手機的通訊卡有,兩種業(yè)務(wù)類型:類卡收費標(biāo)準(zhǔn)是:不管通話時間多長,每部手機每月必須繳月租費12元,另外,通話費按0.2元/分鐘計;類卡收費標(biāo)準(zhǔn)是:沒有月租,但通話費按0.25元/分鐘計.如圖所示,是每月應(yīng)繳費用(元)與通話時間(分鐘)之間的函數(shù)圖象.下列結(jié)論:
①圖中是類卡的收費方式所表示的函數(shù)圖象;
②若李海本月的通話時間為180分鐘,則他選擇類卡省錢;
③若本月李海預(yù)繳了100元的話費,則他選擇類卡劃算;
④若類卡比類卡的話費多10元,則類卡和類卡的通話時間都是40分鐘或類卡比類卡的通話時間多40分鐘且類卡和類卡的通話時間分別為240分鐘和200分鐘.其中正確的結(jié)論有( )
A.①②③④B.②③④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A,B的坐標(biāo)分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)求P點的坐標(biāo)(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達式,并求出面積S的最大值及相應(yīng)的x值;
(3)設(shè)四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關(guān)系并說明理由;
(4)當(dāng)x為何值時,△NPC是一個等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com