14.計算:$\frac{6}{\sqrt{2}}$-$\sqrt{18}$-(-$\frac{1}{2}$)-2=4.

分析 先把各二次根式化為最簡二次根式和利用負整數(shù)整數(shù)冪的意義得到原式=3$\sqrt{2}$-3$\sqrt{2}$+4,然后合并即可.

解答 解:原式=3$\sqrt{2}$-3$\sqrt{2}$+4
=4.
故答案為4.

點評 本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行二次根式的乘除運算,然后合并同類二次根式.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

4.已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為A(-1,0),另一交點為B,與y軸的交點坐標為C(0,3).
(1)求出b,c的值,并寫出此二次函數(shù)的解析式;
(2)求出頂點D的坐標以及S△BCD面積;
(3)根據(jù)圖象,寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.近年來重慶推多個建設(shè)項目治堵,為緩解中梁山隧道常年擁堵的情況,華巖隧道正在緊鑼密鼓地建設(shè)中,預計明年底竣工.圖中線段AB表示該工程的部分隧道.無人勘測飛機從隧道一側(cè)的點A出發(fā),沿著坡度為1:2的路線AE飛行,飛行至分界點C的正上方點D時,測得隧道另一側(cè)點B的俯角為12°,繼續(xù)飛行到點E,測得點B的俯角為45°,此時點E離地面高度EF=700米.

(1)分別求隧道AC段和BC段的長度;
(2)建工集團安排甲、乙兩個金牌施工隊分別從隧道的兩頭向中間施工,甲隊負責AC段施工,乙隊負責BC段施工,計劃兩隊同時開始同時結(jié)束.兩隊開工8天后,甲隊將速度提高了50%,乙隊將速度提高了20%,從而甲隊比乙隊早了7天完工,求原計劃甲、乙兩隊每天各施工多少米.
(參考數(shù)據(jù):tan12°≈0.2,cos12°≈0.98)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

2.如圖,∠B=∠C,增加哪個條件可以讓△ABD≌△ACE?(  )
A.BD=ADB.AB=ACC.∠1=∠2D.以上答案都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

9.若x=$\sqrt{2}$+1,則x3-(2+$\sqrt{2}$)x2+(1+2$\sqrt{2}$)x-$\sqrt{2}$的值是2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.如圖,點O為銳角△ABC的外心,點D為劣弧AB的中點,若∠BAC=α,∠ABC=β,且β>α,則∠DCO=(  )
A.$\frac{β-α}{2}$B.$\frac{α-β}{3}$C.$\frac{β+α}{3}$D.$\frac{β+α}{4}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

6.如圖,已知:AC、BD相交于E,DE=CE,∠BAC=∠ABD,則圖中有2個等腰三角形,3對全等三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

3.已知有理數(shù)a、b在數(shù)軸上的位置如圖所示,下列結(jié)論正確的是( 。
A.a>bB.ab<0C.b-a>0D.a+b>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

4.若7x3y3與一個多項式的積是28x7y3-21x5y5+2y•(7x3y32,則這個多項式為( 。
A.4x4-3x2y2+14x3y4B.4x2y-3x2y2
C.4x4-3y2D.4x4-3xy2+7xy3

查看答案和解析>>

同步練習冊答案