【題目】如圖,頂點為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON.
(1)求該二次函數(shù)的關(guān)系式;
(2)若點A的坐標是(6,-3),求△ANO的面積;
(3)當(dāng)點A在對稱軸l右側(cè)的二次函數(shù)圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標;如果不能,請說明理由.
【答案】(1)
(2)12
(3)相似三角形的基本知識推出該角度的相等,不能
【解析】試題分析:(1)∵二次函數(shù)圖象的頂點為P(4,-4),∴設(shè)二次函數(shù)的關(guān)系式為。
又∵二次函數(shù)圖象經(jīng)過原點(0,0),∴,解得。
∴二次函數(shù)的關(guān)系式為,即。(2分)
(2)設(shè)直線OA的解析式為,將A(6,-3)代入得,解得。
∴直線OA的解析式為。
把x=4代入得y=-2。∴M(4,-2)。
又∵點M、N關(guān)于點P對稱,∴N(4,-6),MN=4。
∴。(3分)
(3)①證明:過點A作AH⊥于點H,, 與x軸交于點D。則
設(shè)A(),
則直線OA的解析式為。
則M(),N(),H()。
∴OD=4,ND=,HA=,NH=。
∴。
∴ 。∴∠ANM=∠ONM。(2分)
②不能。理由如下:分三種情況討論:
情況1,若∠ONA是直角,由①,得∠ANM=∠ONM=450,
∴△AHN是等腰直角三角形。∴HA=NH,即。
整理,得,解得。
∴此時,點A與點P重合。故此時不存在點A,使∠ONA是直角。
情況2,若∠AON是直角,則。
∵,
∴。
整理,得,解得, 。
∴此時,故點A與原點或與點P重合。故此時不存在點A,使∠AON是直角。
情況3,若∠NAO是直角,則△AMN∽△DMO∽△DON,∴。
∵OD=4,MD=,ND=,∴。
整理,得,解得。
∴此時,點A與點P重合。故此時不存在點A,使∠ONA是直角。
綜上所述,當(dāng)點A在對稱軸右側(cè)的二次函數(shù)圖象上運動時,△ANO不能成為直角三角形。(3分)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解答下列問題.
例:當(dāng)a>0時,如a=6,則|a|=|6|=6,故此時|a|是它本身;當(dāng)a=0時,|a|=0,故此時|a|是零;
當(dāng)a<0時,如a=﹣6,則|a|=|﹣6|=6=﹣(﹣6),故此時|a|是它的相反數(shù).
綜上所述,|a|可分三種情況,即|a|=
這種分析方法滲透了數(shù)學(xué)的分類討論思想.
問:
(1)請仿照例中的分類討論的方法,分析二次根式 的各種展開的情況.
(2)猜想 與|a|的大小關(guān)系是 |a|.
(3)當(dāng)1<x<2時,試化簡: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)y=kx-1(x>0)的圖象經(jīng)過點A(1,2)和點B(m,n)(m>1),過點B作y軸的垂線,垂足為C.
(1)求該反比例函數(shù)解析式;
(2)當(dāng)△ABC面積為2時,求點B的坐標.
(3)P為線段AB上一動點(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點P,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,D、E分別是AB,AC上的點,AB=AC,AD=AE,然后將△ADE繞點A順時針旋轉(zhuǎn)一定角度,連接BD,CE,得到圖②,將BD,CE分別延長至M,N,使DM= BD,EN= CE,連接AM,AN,MN得到圖③,請解答下列問題:
(1)在圖②中,BD與CE的數(shù)量關(guān)系是;
(2)在圖③中,猜想AM與AN的數(shù)量關(guān)系,∠MAN與∠BAC的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,動點P從A點出發(fā)沿折線AD﹣DC﹣CB運動,當(dāng)點P運動到點B時停止.已知動點P在AD、BC上的運動速度為1cm/s,在DC上的運動速度為2cm/s.△PAB的面積y(cm2)與動點P的運動時間t(s)的函數(shù)關(guān)系圖象如圖②.
(1)a=______,b=______;
(2)用文字說明點N坐標的實際意義;
(3)當(dāng)t為何值時,y的值為2cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)問題情景:某學(xué)校數(shù)學(xué)學(xué)習(xí)小組在討論“隨機擲二枚均勻的硬幣,得到一正一反的概率是多少”時,小聰說:隨機擲二枚均勻的硬幣,可以有“二正、一正一反、二反”三種情況,所以,P(一正一反)=;小穎反駁道:這里的“一正一反”實際上含有“一正一反,一反一正”二種情況,所以P(一正一反)=.
⑴ 的說法是正確的.
⑵為驗證二人的猜想是否正確,小聰與小穎各做了100次實驗,得到如下數(shù)據(jù):
計算:小聰與小穎二人得到的“一正一反”的頻率分別是多少?從他們的實驗中,你能得
到“一正一反”的概率是多少嗎?
⑶對概率的研究而言小聰與小穎兩位同學(xué)的實驗說明了什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com