求證:各邊相等的圓的內(nèi)接多邊形是正多邊形.

答案:略
解析:

已知:多邊形是⊙O的內(nèi)接n邊形.

,

求證:n邊形是正n邊形

證明:∵

是⊙On等分點(diǎn).

n邊形是正n邊形.


提示:

本題只要證明多邊形的各個(gè)頂點(diǎn)是圓的等分點(diǎn)即可.證明應(yīng)與圓的性質(zhì)相聯(lián)系.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠·優(yōu)化訓(xùn)練·九年級(jí)數(shù)學(xué)下(北京課改版)·銀版 題型:044

某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),進(jìn)行如下討論:

甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形;

乙同學(xué):我發(fā)現(xiàn)邊數(shù)是6時(shí),它也不一定是正多邊形.如圖一,△ABC是正三角形,AD=BE=CF,可以證明六邊形ADBECF的各內(nèi)角相等,但它未必是正六邊形;

丙同學(xué):我能證明,邊數(shù)是5時(shí),它是正多邊形.我想,邊數(shù)是7時(shí),它可能也是正多邊形.

(1)請(qǐng)你說明乙同學(xué)構(gòu)造的六邊形各內(nèi)角相等.

(2)請(qǐng)你證明,各內(nèi)角都相等的圓內(nèi)接七邊形ABCDEFG(如圖二)是正七邊形(不必寫已知、求證).

(3)根據(jù)以上探索過程,提出你的猜想(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:047

求證:各邊相等的圓的內(nèi)接多邊形是正多邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省揚(yáng)州市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),進(jìn)行如下討論:
甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形.
乙同學(xué):我發(fā)現(xiàn)邊數(shù)是6時(shí),它也不一定是正多邊形,如圖1,△ABC是正三角形,,證明六邊形ADBECF的各內(nèi)角相等,但它未必是正六邊形.
丙同學(xué):我能證明,邊數(shù)是5時(shí),它是正多邊形,我想…,邊數(shù)是7時(shí),它可能也是正多邊形.
(1)請(qǐng)你說明乙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;
(2)請(qǐng)你證明,各內(nèi)角都相等的圓內(nèi)接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年云南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•云南)某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),進(jìn)行如下討論:
甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形.
乙同學(xué):我發(fā)現(xiàn)邊數(shù)是6時(shí),它也不一定是正多邊形,如圖1,△ABC是正三角形,,證明六邊形ADBECF的各內(nèi)角相等,但它未必是正六邊形.
丙同學(xué):我能證明,邊數(shù)是5時(shí),它是正多邊形,我想…,邊數(shù)是7時(shí),它可能也是正多邊形.
(1)請(qǐng)你說明乙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;
(2)請(qǐng)你證明,各內(nèi)角都相等的圓內(nèi)接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案