【題目】如圖,已知扇形AOB的圓心角為120°,點(diǎn)C是半徑OA上一點(diǎn),點(diǎn)D是上一點(diǎn).將扇形AOB沿CD對折,使得折疊后的圖形恰好與半徑OB相切于點(diǎn)E.若∠OCD=45°,OC=+1,則扇形AOB的半徑長是( 。
A. 2+B. 2+C. 2D.
【答案】B
【解析】
作O關(guān)于CD的對稱點(diǎn)F,連接CF、EF,則EF為扇形AOB的半徑,由折疊的性質(zhì)得:∠FCD=∠OCD=45°,FC=OC=+1,得出△OCF是等腰直角三角形,得出∠COF=45°,OF=OC=+,∠EOF=∠AOB﹣∠COF=75°,由切線的性質(zhì)得出∠OEF=90°,得出∠OFE=15°,由三角函數(shù)即可得出結(jié)果.
作O關(guān)于CD的對稱點(diǎn)F,連接CF、EF,如圖1所示:
則EF為扇形AOB的半徑,
由折疊的性質(zhì)得:∠FCD=∠OCD=45°,FC=OC=+1,
∴∠OCF=90°,
∴△OCF是等腰直角三角形,
∴∠COF=45°,OF=OC=+,
∴∠EOF=∠AOB﹣∠COF=75°,
∵折疊后的圖形恰好與半徑OB相切于點(diǎn)E,
∴∠OEF=90°,
∴∠OFE=15°,
∵cos∠OFE=cos15°=,
如圖2所示:
∴EF=OF×cos15°=(+)×=2+;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了解某校學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對部分學(xué)生進(jìn)行了跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.繪制成如下統(tǒng)計(jì)圖.
(1)李老師一共調(diào)查了多少名同學(xué)?并將下面條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)若該校有1000名學(xué)生,則數(shù)學(xué)課前預(yù)習(xí)“很好”和“較好”總共約多少人?
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.(要求列表或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市農(nóng)林種植專家指導(dǎo)貧困戶種植紅梨和青棗,收獲的紅梨和青棗優(yōu)先進(jìn)入該市水果市場.已知某水果經(jīng)銷商購進(jìn)了紅梨和青棗兩種水果各10箱,分配給下屬的甲、乙兩個(gè)零售店(分別簡稱甲店、乙店)銷售.預(yù)計(jì)每箱水果的盈利情況如表
紅梨/箱 | 青棗/箱 | |
甲店 | 22元 | 34元 |
乙店 | 18元 | 26元 |
(1)若甲、乙兩店各配貨10箱,其中甲店配紅梨2箱,青棗8箱;乙店配紅梨8箱,青棗2箱,請你計(jì)算出經(jīng)銷商能盈利多少元?
(2)若甲、乙兩店各配貨10箱,且在保證乙店盈利不小于200元的條件下,請你設(shè)計(jì)出使水果經(jīng)銷商盈利最大的配貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果零售商店,通過對市場行情的調(diào)查,了解到兩種水果銷路比較好,一種是冰糖橙,一種是睡美人西瓜.通過兩次訂貨購進(jìn)情況分析發(fā)現(xiàn),買40箱冰糖橙和15箱睡美人西瓜花去2000元,買20箱冰糖橙和30箱睡美人西瓜花去1900元.
(1)請求出購進(jìn)這兩種水果每箱的價(jià)格是多少元?
(2)該水果零售商在五一期間共購進(jìn)了這兩種水果200箱,冰糖橙每箱以40元價(jià)格出售,西瓜以每箱50元的價(jià)格出售,獲得的利潤為w元.設(shè)購進(jìn)的冰糖橙箱數(shù)為a箱,求w關(guān)于a的函數(shù)關(guān)系式;
(3)在條件(2)的銷售情況下,但是每種水果進(jìn)貨箱數(shù)不少于30箱,西瓜的箱數(shù)不少于冰糖橙箱數(shù)的5倍,請你設(shè)計(jì)進(jìn)貨方案,并計(jì)算出該水果零售商店能獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“作平行四邊形一邊中點(diǎn)”的尺規(guī)作圖過程.
已知:平行四邊形ABCD.
求作:點(diǎn)M,使點(diǎn)M為邊AD的中點(diǎn).
作法:如圖,
①作射線BA;
②以點(diǎn)A為圓心,CD長為半徑畫弧,交BA的延長線于點(diǎn)E;
③連接EC交AD于點(diǎn)M.
所以點(diǎn)M就是所求作的點(diǎn).
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接AC,ED.
∵四邊形ABCD是平行四邊形,
∴.
∵AE= ,
∴四邊形EACD是平行四邊形( )(填推理的依據(jù)).
∴( )(填推理的依據(jù)).
∴點(diǎn)M為所求作的邊AD的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個(gè)小方格都是邊長為1的正方形,在平面直角坐標(biāo)系中.
(1)寫出圖中從原點(diǎn)O出發(fā),按箭頭所指方向先后經(jīng)過的A、B、C、D、E這幾個(gè)點(diǎn)點(diǎn)的坐標(biāo);
(2)按圖中所示規(guī)律,找到下一個(gè)點(diǎn)F的位置并寫出它的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P點(diǎn)Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們的運(yùn)動(dòng)速度都是1cm/s.設(shè)P,Q出發(fā)t秒時(shí),△BPQ的面積為y cm2,已知y與t的函數(shù)關(guān)系的圖象如圖2(曲線OM為拋物線的一部分).則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時(shí),;③直線NH的解析式為y=t+27; ④若△ABE與△QBP相似,則t=秒, 其中正確結(jié)論的個(gè)數(shù)為( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com