【題目】直線過原點和點,位于第一象限的點在直線上,軸上有一點,,軸于點.

1)求直線的解析式;

2)求線段、的長度;

3)求點的坐標;

4)若點是線段上一點,令長為,的面積為.

①寫出的函數(shù)關(guān)系式,并指出自變量的取值范圍;

②當取何值時,為鈍角三角形.

【答案】1)直線的函數(shù)解析式為;(2;(34)①時,為鈍角三角形.

【解析】

1)根據(jù)題意,設(shè)直線的函數(shù)解析式為:,然后將代入解析式中,即可求出直線的解析式;

2)根據(jù)題意,可設(shè)A點坐標為(,),從而得出:,則,然后根據(jù)點A的縱坐標=AH,列方程即可求出x,從而求出線段、的長度;

3)由(2)即可求出A點坐標;

4)①根據(jù)三角形的面積公式即可求出的函數(shù)關(guān)系式,然后根據(jù)題意,即可求出自變量的取值范圍;

②由圖可知:當0BPBH時,為鈍角三角形,從而求出此時x的取值范圍.

解:(1)根據(jù)題意,設(shè)直線的函數(shù)解析式為:

∵將代入中,解得:

∴直線的函數(shù)解析式為:

2,,

,

設(shè)A點坐標為(

,則OB=16,,則,

,

解得:

,

3)由(2)知:點A的坐標為;

4)①,

點是線段上一點,的面積為

解得:

②由圖可知:當0BPBH時,為鈍角三角形

即當時,為鈍角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,,,連接BD

1)如圖1,求證DB平分;

2)如圖2,連接AC,若,求證:;

3)如圖3,在(2)的條件下,延長ADBC的延長線于F,點E在邊AB上,,連CEBDG,當時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或列方程組解應(yīng)用題.

老京張鐵路是1909年由“中國鐵路之父”詹天佑主持設(shè)計建造的中國第一條干線鐵路,全長約210千米,用“人”字形鐵軌鋪筑的方式解決了火車上山的問題.京張高鐵是2022年北京至張家口冬奧會的重點配套交通基礎(chǔ)設(shè)施,全長約175千米,預(yù)計2019年底建成通車.京張高鐵的預(yù)設(shè)平均速度將是老京張鐵路的5倍,可以提前5個小時到達,求京張高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,點EAB上,把ABC沿CE折疊后,點B恰好與斜邊AC的中點D重合.

(1)求證:△ACE為等腰三角形;

(2)AB=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BDCF的數(shù)量關(guān)系是   ;BDCF位置關(guān)系是   

(2)拓展探究:如圖2,當△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

(3)解決問題:如圖3,當△ABC繞點A逆時針旋轉(zhuǎn)45°時,延長BDCF于點H.

求證:BD⊥CF;

AB=2,AD=3時,則線段DH的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線AB分別于x,y軸交于AB兩點,過點B的直線交x軸正半軸于點C,且OBOC=31.

1)直接寫出點A、B、C的坐標;

2)在線段OB上存在點P,使點PB,C的距離相等,求出點P的坐標;

3)在x軸上方存在點D,使得以點A,B,D為頂點的三角形與△ABC全等,求出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車同時從A地出發(fā),各自都以自己的速度勻速向B地行駛,甲車先到B地,停車1小時后按原速勻速返回,直到兩車相遇.已知,乙車的速度是60千米/時,如圖是兩車之間的距離y(千米)與乙車行駛的時間x(小時)之間的函數(shù)圖象,則下列說法不正確的是( 。

A.A、B兩地之間的距離是450千米

B.乙車從出發(fā)到與甲車返回時相遇所用的時間是6.6小時

C.甲車的速度是80千米/

D.M的坐標是(6,90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題探究)

將三角形紙片沿折疊,使點A落在點.

1)如圖,當點A落在四邊形的邊上時,直接寫出之間的數(shù)量關(guān)系;

2)如圖,當點A落在四邊形的內(nèi)部時,求證:;

3)如圖,當點A落在四邊形的外部時,探索,,之間的數(shù)量關(guān)系,并加以證明;

(拓展延伸)

4)如圖,若把四邊形紙片沿折疊,使點AD落在四邊形的內(nèi)部點、的位置,請你探索此時,,,之間的數(shù)量關(guān)系,寫出你發(fā)現(xiàn)的結(jié)論,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案