【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),設(shè)客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米.兩車行駛的時間為x小時,y1、y2關(guān)于x的函數(shù)圖象如圖所示:

1)根據(jù)圖象,直接寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;

2)當x為何值時,兩車相遇?

3)甲、乙兩地間有A、B兩個加油站,相距280千米,若客車進入A加油站時,出租車恰好進入B加油站,求A加油站離甲地的距離.

【答案】(1)y160x0≤x≤10),y2=﹣100x+6000≤x≤6);(2)當x小時時,兩車相遇;(3A加油站到甲地距離為120km330km

【解析】

1)直接運用待定系數(shù)法就可以求出y1、y2關(guān)于x的函數(shù)圖關(guān)系式;
2)根據(jù)y1=y2列等式,求出即可;
3)分A加油站在甲地與B加油站之間,B加油站在甲地與A加油站之間兩種情況列出方程求解即可.

1)設(shè)y1k1x,由圖可知,函數(shù)圖象經(jīng)過點(10,600),

10k1600,

解得:k160,

y160x0≤x≤10),

設(shè)y2k2x+b,由圖可知,函數(shù)圖象經(jīng)過點(0,600),(60),

,

解得:,

y2=﹣100x+6000≤x≤6);

2)由題意,得

60x=﹣100x+600,

x;

答:當xh時,兩車相遇;

3)由題意,得

①當A加油站在甲地與B加油站之間時,(﹣100x+600)﹣60x280,

解得x2,

此時,A加油站距離甲地:60×2120km,

②當B加油站在甲地與A加油站之間時,60x﹣(﹣100x+600)=280,

解得x5.5,此時,A加油站距離甲地:60×5.5330km,

綜上所述,A加油站到甲地距離為120km330km

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=﹣x+2的圖象交x軸、y軸分別于點A,B,交直線ykxP

1)求點A、B的坐標;

2)若OPPA,求P點坐標及k的值.

3)在(2)的條件下,C是直線BP上一動點,CEx軸于E,交直線DPD,若CD3ED,直接寫出C點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A50°,∠B=∠C,點D,E,F分別在邊BCCA,AB上,且滿足BFCD,BDCE,∠BFD30°,則∠FDE的度數(shù)為( 。

A.75°B.80°C.65°D.95°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BCAB,連結(jié)OC,弦ADOC,直線CDBA的延長線于點E

(1)求證:直線CD是⊙O的切線;

(2)若DE=2BC,AD=5,求OC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人以相同路線前往距離單位10km的培訓中心參加學習,圖中,分別表示甲、乙兩人前往目的地所走的路程s(千米)隨時間t(分)變化的函數(shù)圖象,以下說法:①甲比乙提前12分到達;②甲的平均速度為15千米/時;③甲乙相遇時,乙走了6千米;④乙出發(fā)6分鐘后追上甲.其中正確的有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖等邊ABC,DAC的中點,EBC的延長線上,且CECD,過DDFBE于點E

)求證:BDE為等腰三角形;

)請猜想FCBF間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當拱頂離水面2m時,水面寬4m,則水面下降1m時,水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于A、B,以線段AB為直角邊在第一象限內(nèi)作RtABC,且使∠ABC=30°。

1)求AC的長度;

2)如果在第二象限內(nèi)有一點,試求四邊形AOPB的面積Sm之間的函數(shù)關(guān)系式,并求當APBABC面積相等時m的值。

3)是否存在使QAB是等腰三角形并且在坐標軸上的點Q?若存在,請寫出點Q所有可能的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點F.若∠BAC=35°,則∠BFC的大小是(  )

A. 105° B. 110° C. 100° D. 120°

查看答案和解析>>

同步練習冊答案