分析二元一次方程組的解的情況.

答案:
解析:

  當時,有惟一解;

  當時,無解;

  當時,有無窮解


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列解題過程,借鑒其中一種方法解答后面給出的試題:
問題:某人買13個雞蛋,5個鴨蛋、9個鵝蛋共用去了9.25元;買2個雞蛋,4個鴨蛋、3個鵝蛋共用去了3.20元.試問只買雞蛋、鴨蛋、鵝蛋各一個共需多少元.
分析:設買雞蛋,鴨蛋、鵝蛋各一個分別需x、y、z元,則需要求x+y+z的值.由題意,知
13x+5y+9z=9.25---(1)
2x+4y+3z=3.20----(2)
;
視x為常數(shù),將上述方程組看成是關于y、z的二元一次方程組,化“三元”為“二元”、化“二元”為“一元”從而獲解.
解法1:視x為常數(shù),依題意得
5y+9z=9.25-13x---(3)
4y+3z=3.20-2x----(4)

解這個關于y、z的二元一次方程組得
y=0.05+x
z=1-2x

于是x+y+z=x+0.05+x+1-2x=1.05.
評注:也可以視z為常數(shù),將上述方程組看成是關于x、y的二元一次方程組,解答方法同上,你不妨試試.
分析:視x+y+z為整體,由(1)、(2)恒等變形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:設x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下關于a、b的二元一次方
程組
5a+4b=9.25---(5)
4a-b=3.20----(6)

由⑤+4×⑥,得21a+22.05,a=1.05.
評注:運用整體的思想方法指導解題.視x+y+z,2x+z為整體,令a=x+y+z,b=2x+z,代入①、②將原方程組轉(zhuǎn)化為關于a、b的二元一次方程組從而獲解.
請你運用以上介紹的任意一種方法解答如下數(shù)學競賽試題:
購買五種教學用具A1、A2、A3、A4、A5的件數(shù)和用錢總數(shù)列成下表:
精英家教網(wǎng)
那么,購買每種教學用具各一件共需多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 滬科七年級版 2009-2010學年 第12期 總第168期 滬科版 題型:044

某制衣廠現(xiàn)有24名制作服裝的工人,每天都制作某種品牌的襯衫和褲子,每人每天可制作襯衫3件或褲子5條.若該廠要求每天制作的襯衫和褲子正好能配成套(數(shù)量相等),則應安排制作襯衫和褲子各多少人?

說一說:這是一個實際問題,我們用什么方法來解決此類問題呢?

用我們小學學過的算術方法能解嗎?

若用我們熟悉的一元一次方程來解,如何求解?

(1)這里有幾個未知量?________;

(2)它們之間有什么關系?________;

(3)怎樣用字母來表示題中的未知量?若設制作襯衫的人數(shù)為x人,則制作褲子的人數(shù)為________

(4)根據(jù)哪個相等關系來列方程?________

算一算:根據(jù)以上分析,列出一元一次方程解決這個問題.

想一想:這里有兩個未知量,能用二元一次方程組來解決嗎?

(1)如何用字母來表示題中的兩個未知量?

設:________

(2)聯(lián)系未知量的相等關系有兩個,它們是:________

(3)根據(jù)所設字母,你能列出兩個方程嗎?

________;②________

做一做:請用二元一次方程組解答這個問題.

議一議:根據(jù)市場調(diào)查,制作一件襯衫可獲得利潤30元,制作一條褲子可獲得利潤16元.若該廠要求每天獲得利潤為2110元,則需要安排多少名工人制作襯衫?

查看答案和解析>>

科目:初中數(shù)學 來源:新課標三維目標導學與測評  數(shù)學八年級上冊 題型:044

如圖表示一騎自行車者和一騎摩托車者沿相同路線由甲地到乙地行駛過程的函數(shù)圖象(分別為正比例函數(shù)和一次函數(shù)).兩地間的距離是80km.請你根據(jù)圖象回答或解決下列問題:

(1)誰出發(fā)得較早?早多長時間?誰到達乙地較早?早多長時間?

(2)兩人在途中行駛的速度分別是多少?

(3)請你分別求出表示自行車和摩托車行駛過程的函數(shù)解析式;(不要求寫出自變量的取值范圍)(因為學生還未學習二元一次方程組解法,所以本題對學生要求較高,但可以通過圖象分析出速度,再根據(jù)路程與時間的關系列出函數(shù)關系式,以下一些類型題可同理解答);

(4)指出在什么時間段內(nèi)兩車均行駛在途中(不包括端點)、在這一時間段內(nèi),請你分別按下列條件列出關于時間x的方程或不等式(不要求化簡,也不要求求解):

①自行車行駛在摩托車前面;

②自行車與摩托車相遇;

③自行車行駛在摩托車后面.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下列解題過程,借鑒其中一種方法解答后面給出的試題:
問題:某人買13個雞蛋,5個鴨蛋、9個鵝蛋共用去了9.25元;買2個雞蛋,4個鴨蛋、3個鵝蛋共用去了3.20元.試問只買雞蛋、鴨蛋、鵝蛋各一個共需多少元.
分析:設買雞蛋,鴨蛋、鵝蛋各一個分別需x、y、z元,則需要求x+y+z的值.由題意,知數(shù)學公式;
視x為常數(shù),將上述方程組看成是關于y、z的二元一次方程組,化“三元”為“二元”、化“二元”為“一元”從而獲解.
解法1:視x為常數(shù),依題意得數(shù)學公式
解這個關于y、z的二元一次方程組得數(shù)學公式
于是x+y+z=x+0.05+x+1-2x=1.05.
評注:也可以視z為常數(shù),將上述方程組看成是關于x、y的二元一次方程組,解答方法同上,你不妨試試.
分析:視x+y+z為整體,由(1)、(2)恒等變形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:設x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下關于a、b的二元一次方
程組數(shù)學公式
由⑤+4×⑥,得21a+22.05,a=1.05.
評注:運用整體的思想方法指導解題.視x+y+z,2x+z為整體,令a=x+y+z,b=2x+z,代入①、②將原方程組轉(zhuǎn)化為關于a、b的二元一次方程組從而獲解.
請你運用以上介紹的任意一種方法解答如下數(shù)學競賽試題:
購買五種教學用具A1、A2、A3、A4、A5的件數(shù)和用錢總數(shù)列成下表:

那么,購買每種教學用具各一件共需多少元?

查看答案和解析>>

同步練習冊答案